
Abstract— Malaysia's palm oil plantation industry is labor 

intensive. It is estimated that there were 505,972 workers in 2012 

and this number consists mainly of foreigners of about 76.5% 

and local 23.5%. To address the labor-intensive nature of the 

industry and reduce costs, mechanization and automation have 

emerged as potential solutions. However, the dense foliage of 

matured oil palm trees, along with their overlap with 

neighboring trees, obstructs crucial information beneath the 

canopy. Aerial mapping or Google map images cannot reliably 

provide the necessary information for unmanned ground 

vehicles (UGVs) to navigate the under-canopy environment. 

Furthermore, GPS signals may be degraded or inaccessible 

under the canopy. Consequently, researchers have developed 

Vision-based and Lidar-based navigation methods, specifically 

tailored for GPS-denied environments, such as Simultaneous 

Localization and Mapping (SLAM). This survey paper aims to 

explore the current research on Visual-based and Lidar-based 

navigation in outdoor environment without relying on GPS 

sensor. Experiments are carried out in outdoor environment to 

simulate situations without GPS coverage. The resulting maps 

generated from these methods were then qualitatively analyzed. 

I. INTRODUCTION 

The robotics community has witnessed a significant rise in 

outdoor applications across various sectors such as 

agriculture, search and rescue, mining, defense, environment 

monitoring, and planetary exploration. In the agricultural 

sector, where productivity relies on efficiency, reliability, and 

precision, reducing the need for manual labor is crucial as it 

constitutes a major portion of field operation costs. For 

example, Malaysia's labor-intensive oil palm plantation 

industry employed approximately 505,972 workers in 2012, 

with foreigners accounting for 76.5% and locals 23.5%.[1] 

Mechanization and automation are crucial for reducing labor 

costs and maintaining competitiveness in agriculture. 

However, the agricultural environment is challenging, with 

dynamic and unstructured conditions. Accurate mapping and 

localization are necessary for autonomous navigation in such 

environments. Traditional GPS signals may be limited or 

unavailable, requiring the use of Simultaneous Localization 

and Mapping (SLAM) techniques. SLAM compensates for 

GPS limitations by utilizing sensors like stereoscopic cameras 

or Lidar, which are combined with secondary sensors like 

IMUs, wheel odometry, or GPS to maintain the 3D spatial 

structure of SLAM. The combination of multiple sensor inputs 

enables vehicle path planning, obstacle avoidance, and 

manipulation. [2] 

II. SLAM ALGORITHMS

SLAM (Simultaneous Localization and Mapping) plays a 

significant role in autonomous vehicles and robot decision 
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making. It is divided into two main types [3]: visual SLAM 

and Lidar-Based SLAM. Visual SLAM, or VSLAM, uses 

cameras and image sensors to capture data, offering 

advantages such as rich information, affordability, lightweight 

design, and small size. However, it is sensitive to lighting 

conditions. On the other hand, Lidar-Based SLAM primarily 

relies on laser or distance sensors, providing greater precision 

and being unaffected by lighting conditions. Nevertheless, 

high-resolution lidar sensors can be expensive. Both types of 

SLAM contribute to navigation and decision-making 

processes by enabling simultaneous localization and mapping 

in various applications.  

The main objective of a 3D SLAM system is to determine 

the robot's position and orientation while creating a map of the 

environment using sensor data. To build the map, classic 

SLAM techniques use front-end odometry, which relates 

subsequent sensor scans, such as lidar or stereo camera point 

clouds. The typical method for relating these scans is iterative 

closest point (ICP), but it can be computationally expensive 

when dealing with a large number of points. Another approach 

is feature-matching, which reduces computation costs. 

However, both methods still result in some accumulated error 

over time, leading to inaccurate odometry. To address this, 

back-end optimization is used. There are two types of back-

end optimization methods: filtering approaches like Extended 

Kalman Filter (EKF), Unscented Kalman Filter (UKF), or 

particle filter, which correct the robot's state in real-time as 

new measurements are available, and graph optimization 

approaches, which optimize the full robot trajectories using a 

complete set of measurements to enhance odometry accuracy. 

The methods used in graph optimization are for example such 

as iSAM (Incremental Smoothing And Mapping) [4], 

GTSAM (Georgia Tech Smoothing and Mapping) [5], and 

G2O(General Graph Optimization) [6]. In SLAM algorithm, 

the loop closure detection is added to detect whether the path 

has formed a loopback. This is because the current trajectory 

accumulates error by time and form a significant trajectory 

drift. Loop closure detection eliminates drifts by eliminating 

visited locations to create a more accurate map. During each 

mapping session, global loop closure detection is used to 

figure out when the robot goes back to a previous map[7]. 

Global loop closure is important because it can fix errors that 

build up as the robot moves through the environment. Local 

loop closure, on the other hand, can make the map more 

consistent and complete in a given area. A user may not revisit 

to a particular point in the scene, which makes global loop 

closure impossible. Therefore, local loop closures are used to 

refine the initial pose estimate [8]. There are several SLAM 

methods, for example, RTABMAP [9], ORB-SLAM3 [10], 

LEGO-LOAM [11], LIO-SAM  [12, 13], LVI-SAM [14] and 
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others. In this study, we have compared two SLAM 

(Simultaneous Localization and Mapping) algorithms: 

RTABMAP and LIO-SAM using a combination of 3D Lidar, 

stereo camera, and IMU (Inertial Measurement Unit) as 

inputs. RTABMAP has the capability to use either Lidar or 

visual camera input for its odometry node, whereas LIO-SAM 

specifically utilizes Lidar and IMU data. For this research, we 

aimed to investigate and compare the qualitative differences 

in map accuracy between these two algorithms, despite both 

of them incorporating Lidar as one of the input sensors.  

A. RTABMAP 

RTAB-MAP (Real-Time Appearance-Based Mapping) [9, 

15] is a graph-based SLAM approach widely used in mobile 

robot navigation within the Robot Operating System (ROS). It 

supports various data types such as RGB-D, stereo, and 

LiDAR, and is versatile in handling mixed modalities. RTAB-

MAP can work with different odometry approaches, including 

visual, LiDAR, or wheel-based methods. For visual odometry, 

it uses Frame-To-Map (F2M) or Frame-To-Frame (F2F) 

techniques, while LiDAR odometry involves Scan-to-Map 

(S2M) or Scan-to-Scan (S2S) methods. The latter processes 

3D point clouds from LiDAR scans, down-samples them, 

calculates normals, and applies the Iterative Closest Point 

(ICP) algorithm to estimate the transformation between fixed 

and moving point clouds. RTAB-MAP incorporates an 

appearance-based loop closure detector using a bag-of-words 

approach, which helps identify whether a new image 

corresponds to a previous or new location[15].When a loop 

closure hypothesis is accepted, a new constraint is added to 

the graph of the map, whereupon a graph optimizer minimizes 

the errors in the map. When a loop closure occurs, the global 

map should be re-assembled according to all new optimized 

poses for all nodes in the map's graph. For loop closure 

detection, the current bag-of-words approach is dependent on 

a camera, meaning that a camera is always required even if 

LIDAR is used for odometry.  

 

B. LIO SAM 

LIDAR is commonly utilized alongside other sensors, such 
as IMU and GPS, to estimate the state and create map. There 
are two primary design approaches for Lidar mapping that 
involve sensor fusion: loosely-coupled fusion and tightly-
coupled fusion. In the tightly-coupled approach, the pre-
integrated IMU measurements are typically leveraged to 
rectify the skewed point clouds. Lidar Inertial Odometry, a 
tightly-coupled method, employs all IMU data directly and 
optionally incorporates a global positioning system (GPS) to 
correct height errors. To achieve an accurate map over large 
outdoor areas, sensor fusion between LIDAR/IMU and a high-

precision GPS sensor is essential.[16]. LIO-SAM formulates 
lidar inertial odometry on a factor graph suitable for multi-
sensor fusion and global optimization [12]. In LIO-SAM four 
types of factors are:(a) IMU pre-integration factors, (b) lidar 
odometry factors, (c) GPS factors, and (d) loop closure factors. 
It estimates states utilizing tightly coupled IMU integration and 
Lidar odometry via factor graph optimization. In Lidar 
odometry factor, a feature extraction is performed on new lidar 
scan. Edge and planar features are extracted by evaluating the 

roughness of points over a local region. Instead of using every 
lidar for computing and adding factors, the LIO SAM adopt the 
keyframe selection. The factor graph is optimized upon the 
insertion of a new node using incremental smoothing and 
mapping with the Bayes tree (iSAM2) [17].Warku et. al [13] 
use a Velodyne (VLP-16) and Xsens MTI-G-700 to obtain data 
from inertial measurement devices to create a 3D mapping of 
the indoor and outdoor environment and visualize the created 
map using the LIO-SAM method. The map optimization 
optimizes lidar odometry factor and GPS factor. This factor 
graph is maintained consistently throughout the whole test. The 
IMU pre-integration optimizes IMU and the lidar odometry 
factor and estimates the IMU bias. This factor graph is 
periodically reset and guarantees real-time odometry 
estimation with frequency IMU. Fig. 1 illustrates the factor-
graph structure in LIO-SAM flow diagram. Loop closure 
detected by Euclidean distance radius search and ICP 
registration significantly degrades real-time performance [18]. 

III. EXPERIMENTAL SETUP AND RESULTS 

A.  Experimental Setup 

Our experimental site is located at the MIMOS campus in 
Kuala Lumpur, Malaysia. The total size of the MIMOS site is 
approximately 133288 m2. The custom hardware setup with 
Scooter-based is shown in Figure 2(a).  A ROS melodic 
operating system and equipped with sensors such as 3D Lidar 
VLP-16, Xsens IMU 710 with external receiver and a unit 
depth camera ZED 2i. The speed of the scooter while recording 
is 12km/h. The analysis of the 3D point cloud produced from 
MIMOS Berhad area is divided into three subareas; A1, A2 and 
A3 as shown in Fig. 2(b). A1 has more features, mainly parking 
lots. A2 contains more challenging roads (elevations, slopes, 
and bumps), and A3 is mostly consists of unoccupied parking 
lots. The user drives the scooter around MIMOS Berhad in 

Figure 2. (a) Experimental setup for hand-held devices based on 
motorized scooter. (b) Top view of the image captured by Google Earth. 

The datasets are collected in 3 different subareas of MIMOS: A1, A2, A3 

(a) 
(b) 

Figure 1 Factor-graph structure of LIO-SAM[12] 



  

order to collect the dataset, then pivots back to the starting 
locations. 

B. Results 

For qualitative evaluation, RTABMAP and LIO-SAM 

were utilized to generate a comprehensive 3D map of the 

environment. To evaluate loop closure detection, markers 

were placed in specific areas and compared using both 

methods. In cases where a false loop closure was identified, 

it was classified as a false positive, indicating incorrect loop 

closure detection. Conversely, if no loop closure was 

detected in a similar previously visited location, it was 

considered a false negative, indicating a missed loop 

closure.Loop closure detection can be performed through two 

methods: local loop closure and global loop closure. Local 

loop closures are focused on detecting and correcting loop 

closures within a restricted spatial and temporal range, 

typically centered around the robot's current pose or 

trajectory segment. On the other hand, global loop closures 

encompass the detection and correction of loop closures over 

the entire trajectory or a significant portion of it, aiming to 

achieve alignment and optimization at a global scale. By 

employing these methods, RTABMAP and LIO-SAM aim to 

identify and rectify loop closures in order to enhance map 

accuracy and maintain consistent localization throughout the 

mapping process.  

Fig. 3(a) shows the top view of generate map of A1 using 

RTABMAP, Fig. 3(b) shows the trajectory of A1 with 

RTABMAP, while Fig. 3(c) shows the trajectory of A1 with 

LIO-SAM. Based on the observations made at marker 1, the 

result indicates the presence of false positive local loop 

closure detection in the correct area. However, in Fig. 4(a), 

the RTABMAP database viewer shows loop closure 

detection between identical objects (specifically, a drain) but 

actually at a different location. At marker 2, there is a false 

negative detection where the map fails to close a loop due to 

insufficient inliers in the camera image or issues with image 

illumination. Similarly, at marker 3, there is an incorrect local 

loop closure as the color of the identical object differs. 

Moreover, at marker 4, the start and end images in map A1 

do not achieve global loop closure because of a lack of 

information about the U-turn, resulting in map duplication. 

Fig. 3(d) provides a top view map of A2 using RTABMAP 

while Fig. 3(e) shows A2 with trajectory of RTABMAP and 

Fig. 3(f) illustrate the mapping trajectory of LIO SAM in A2. 

Marker 5 represents a local loop closure, indicating a 

successful detection. On the other hand, marker 6(a) indicates 

the absence of loop closure, which is considered a false 

negative detection. The first and last camera photos displayed 

in the RTABMAP data viewer (Fig. 4(b)) at marker 6(a) 

location show the same region and features as the vehicle 

moves back and forth. The false negative loop closure 

detection could be attributed to the camera's field of view. In 

contrast, using LIO-SAM, marker 6(b) demonstrates a 

successful global loop closure detection (true positive).  

Fig. 3(g) shows the top view of A3, while Fig. 3(h) and 

Fig. 15(i) show the mapping trajectory of A3, for RTABMAP 

and LIO SAM respectively. From the path in Fig. 3(h) and 

Fig 3(i), no global close loops occur with RTABMAP and 

LIO-SAM. Marker 7(a) indicates that there is no global loop 

 

Figure 3 (a) Top view of A1 RTABMAP 3D mapping  (b)RTABMAP 

Mapping trajectory of A1 (c) LIO SAM Mapping trajectory of AI (d) Top 
view of A2 RTABMAP 3D mapping  (e)RTABMAP Mapping trajectory 

of A2 (f) LIO SAM Mapping trajectory of A2 (g) Top view of A3 

RTABMAP 3D mapping  (h)RTABMAP Mapping trajectory of A3 (i) 

LIO SAM Mapping trajectory of A3 

7 (a), 

(b) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(a) 

(b) 

(c) 

 Figure 4 . (a) RTABMAP for A1: Local loop closure detected due to 
identical objects in red box. The yellow dotted are inliers found more 

than one time in the image. It is same objects’ features (drain) found 

but at different location (b) RTABMAP for A2: No global closed loop 
is detected, even if the start and end points are at the same location. 

This is using the default parameters (c) RTABMAP for A3:No loop 

close detected 



  

because the last frames do not receive enough inliers to form 

a closed loop with the starting frame, as shown in Fig. 4(c). 

Fig.5(a) and Fig. 5(b) provides a close-up view of marker 

6(b) before and after applying the LIO-SAM calculation, 

where the purple line indicates the loop constraint that 

effectively closes the loop. However, there are some artifacts 

leading to duplicate features in the same location, resulting 

in an inaccurate map, as shown in Fig. 5(c). For marker 7(b), 

Fig. 5(d) shows the close-up of the global map. It also shows 

that no global loop closure detected based on the output point 

cloud. The point cloud of the mapping trajectory does not 

overlap with the original point cloud resulting in inaccurate 

representation of the map. 

IV. CONCLUSIONS AND DISCUSSION 

Both LIO-SAM and RTAB-Map use Lidar scans to create 

3D maps, but their approaches to loop closure detection differ. 

LIO-SAM primarily relies on Lidar scans for odometry and 

loop closure detection. In contrast, RTAB-Map uses Lidar 

data for odometry but relies on visual information from 

camera images for loop closure. RTAB-Map compares visual 

features to identify loop closures, which can be limited by 

factors like field of view, lighting variations, and object 

similarities, leading to potential detection errors. LIO-SAM 

utilizes raw Lidar scans for odometry, eliminates noise, and 

extracts key points for loop closure using the Iterative Closest 

Point algorithm. It employs a radius-search method to align 

scans from different parts of the trajectory, correcting for drift 

for loop closure detection. LIO-SAM employs a tightly 

coupled approach with the IMU, achieving better loop closure 

detection by fusing Lidar and IMU data to match scans and 

correct drift. However, tightly coupling can introduce errors if 

either sensor has inaccuracies.  Even with loop closure, map 

artifacts can still occur due to false positives, false negatives, 

sensor quality, environmental factors, and handling of 

dynamic changes. 
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Figure 5(a) Before and  (b) after loop close in A3 for marker 6(b) for 

LIO SAM. (c) LIO-SAM: Artifacts presence in the map (d) LIO -

SAM: Close up view from marker 7(b)  
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