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Abstract— We consider the persistent monitoring problem of
a given set of targets moving based on an unknown model by
an autonomous mobile robot equipped with a directional sensor
(e.g., camera). The robot needs to actively plan both its path
and its sensor’s gaze/heading direction to detect and constantly
re-locate all targets by collecting measurements along its path,
to keep the estimated position of each target as accurate as
possible at all times. Our recent work discretize the monitoring
domain into a graph where the deep-reinforcement-learning-
based agent sequentially decide which neighboring node to visit
next. In this work, we extend it by duplicating neighboring
features multiple times and then combining with its unique gaze
features to output a joint decision of “where to go” and “where
to look”. Our simulation experiments show that active gaze
control enhances monitoring performance, particularly in terms
of minimum number of re-observation per target, compared to
agent with a fixed forward-gaze sensor or greedy gaze selection.

I. INTRODUCTION

Persistent monitoring refers to problems where au-
tonomous robots equipped with onboard sensors are tasked
with collecting data to maintain an accurate awareness (i.e.,
belief) over a given domain. There, the use of mobile robots
provides greater flexibility in deployment and can handle
a broader spectrum of tasks compared to fixed sensor net-
work [1], [2]. In our recent work [3], we introduce a neural
approach based on deep reinforcement learning (DRL) to
tackle the single-agent, multi-mobile-target persistent moni-
toring problem. We use cascaded Transformer blocks [4] to
let the agent reason about which target, time, and location to
attend to across multiple scales, which we show also helps
relax the usual limitations of a finite target set. We notice
that due to limited payload capacity, lightweight unmanned
aerial vehicles (UAVs) are often incapable of carrying heavy,
omnidirectional LiDAR sensors, but only lighter, directional
sensors like cameras. Therefore, in this paper, we specifically
investigate the deployment of a lightweight UAV with a
directional sensor to persistently monitor a set of mobile
targets moving over a given domain, where the robot must
simultaneously plan its motion as well as actively control
the gaze of its directional sensor. Specifically, we consider
a quadrotor equipped with a binary directional sensor with
limited Field-of-View (FoV) [5] (e.g., a camera with a visual
classifier for target detection), with this sensor fixed in a
certain position relative to the UAV’s body frame (e.g., front-
facing). Since our quadrotor is omnidirectional, we allow
it to fly to its next waypoint into each of its own four
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Fig. 1: Discrete UAV gazes. (a) The four possible gaze
directions of the UAV (green trapezoidal shades), parallel
or perpendicular to the moving direction. (b) Agent belief
of all targets and executed trajectory so far (white lines
with growing opacity) with corresponding gaze direction
(orange arrows); agent position; agent FoV (green shade);
and targets (colorful squares) unknown to the agent (except
within agent’s FoV).

cardinal directions, i.e., the robot can fly forward, sideways
to the left/right, or even backwards, allowing it to control the
gaze/heading of its onboard directional sensor, as illustrated
in Figure 1.

Aligned with our prior work [3], the agent may or may
not know the number and initial positions of the targets a
priori, while the underlying motion model/dynamics of the
targets is always assumed unknown. Based on measurements
obtained along its path, the agent must build and update a
time-dependent belief of each individual target location, to
reason about/predict their possible location to frequently re-
visit/-locate each of them. To achieve this, our agent aims to
maximize information gain in the vicinity of the targets (i.e.,
minimizes the uncertainty over the true target positions) [6],
[7]. To manage growing uncertainty for targets outside its
FoV, the agent must temporarily stop tracking some of the
targets to focus on others, and then return to the untracked
ones as soon as possible to re-locate them. We note that
the measurements obtained by the agent can significantly
depend on the drone’s gaze, highlighting the importance
of selecting not only the correct UAV location, but also
its correct gaze direction. In doing so, an optimal planner
must balance exploration and exploitation to jointly plan the
shortest path and gaze direction in order to cover all targets’
predicted areas.

We rely on our spatio-temporal attention network [3],
in which we propose to copy each of the agent’s current
neighboring nodes four times, each with a different gaze
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direction, to finally output the next neighboring node to
visit and the associated gaze to adopt along the way. In our
experiment, we discover that compared to fixed forward gaze
and greedy gaze selection (i.e., gaze with the highest belief
value), allowing active gaze control decreases the target
position uncertainty and significantly increase the chance of
observing targets in the agent’s limited sensor footprint.

II. PROBLEM SETUP AND REPRESENTATION

We consider a given set of N mobile targets (i ∈
{1, . . . , N}) moving in a bounded 2D environment. To
interpolates the binary measurements and provides richer in-
formation about the process, we adopt N Gaussian Processes
(GPs) to model the agent belief (see [3] for details).

The agent is equipped with an accurate binary sensor
that produces measurements zi,t ∈ {0, 1} indicating the
presence/absence of target i in the sensor’s FoV/footprint
S(xt). Different from the circular FoV used in [3], we now
assume a directional sensor (here, sector footprint with 60
degrees horizontal FoV), resulting in a trapezoidal-shaped
projected FoV on the 2D search domain. If target i is
within the sensor’s FoV, a 1 measurement will be obtained
at that target’s current position, otherwise a 0 measurement
is obtained at the agent’s current position. The collected
timestamped observed locations and their corresponding
measurements are then utilized to compute the GP posterior
for each target. Note that the number of data entries is
truncated according to their recency in time to maintain
computational tractability.

III. PERSISTENT MONITORING AS A DRL PROBLEM

We use the same approach of casting persistent monitoring
into the DRL framework as [3]. In short, we firstly discretize
the search domain into a graph with k nearest neighboring
nodes connected (k = 10 in practice), formulating it as
a sequential decision-making problem. Next, we augment
the graph with the agent’s belief modelled as Gaussian
Processes with additional future prediction and agent past
trajectory. Upon reaching the previously selected node, the
agent chooses which neighboring node to visit next and
moves toward it along a straight line, sequentially construct-
ing the agent’s trajectory. The agent decisions are reinforced
by a reward signal based on the uncertainty reduction in the
true vicinity areas of all targets. Specifically, based on our
selected Matérn kernel, our reward is a non-negative concave
function with time, which naturally incentivizes the agent to
visit all mobile targets quickly and frequently.

Our proposed spatio-temporal attention neural network
consists of multiple cascaded Transformer blocks [4], se-
quenced into target, temporal, and spatial encoders, and
finally a decoder, to capture dependencies across targets,
time, and space. Compared to these dependency features
that encode the global context of the agent’s belief, the gaze
direction is a shorter-term information which mainly affects
the agent’s decision-making in the short term. That is, the
robot does not require gaze information for distant nodes, but
only for its immediate neighboring nodes. Hence, we only

add gaze features to the agent’s neighboring nodes in our
final decoder, which yields the agent’s policy.

Agent needs to be aware of its neighboring node features
with information within each gaze direction to decide which
neighboring node and which sensor’s heading to orient.
We extract gaze-specific features hj at agent’s neighboring
node j from the agent belief. To facilitate learning, the
feature hj,g of gaze index g consists of (1) the maximum
predicted value inside that footprint, (2) relative angle of
that maximum value, (3) gaze direction in world frame, (4)
distance to that maximum value, and (5) the gaze index g.
Since the encoder output does not contains gaze information,
we duplicate each neighboring node feature (h̃STG

j in [3])
four times and then concatenate with their unique gaze
features hj , obtain h̃STG

j,g . By doing so, h̃STG
j,g now both

contains spatio-temporal context and the information within
the gaze directions of each neighboring nodes. In the end,
the decoder output a policy distribution, from which we
jointly determine/sample which neighboring node to visit and
which gaze direction to orient. Note that we also attempt to
output the next neighboring node first and then output its
associated gaze direction autoregressively. However, it turns
out to perform worse than simple duplication due to the order
constraint it imposes. This implies that the decision of where
to go and where to look needs to be inferred together, other
than in sequence, which potentially limits the selection of a
perfect gaze but at a less informative area.

We adopt the PPO algorithm to train our neural net-
work [8], details are similar to [3].

IV. EXPERIMENTS

In our experiment, we adopt the overall average uncer-
tainty in all target areas (lower is better) Unc and the
minimum number of target re-observations obtained among
all targets (higher is better) MinOb as metrics.

We report the comparison results of our active gaze control
with two baseline methods, one employing fixed forward-
gaze and the other using greedy gaze towards the highest
belief value. The results are shown in Table I, with variations
in the number of targets N and the speed ratio between
the targets and the agent rv (all instances with |V | = 200
nodes and T = 100 history steps). As we see, except for
highly dynamic environments, active gaze/heading selection
improves the performance by a large margin, especially in
terms of MinOb. We also observe that the greedy gaze
selection works particularly effective in the search domain
where there are fewer targets in the search domain. This
can be attributed to the spatial sparsity of the targets, which
contributes to their increased ease and predictability of being
located. Overall, the comparison implies that our network
effectively facilitates the learning of an active gaze for the
robot to observe possible target positions, likely by further
relaxing the constraints imposed by our graph discretization.
That being said, the robot’s active gaze control allows it
to sense areas that were previously unobservable or poorly
discretized, expanding its effective monitoring domain. Fur-
thermore, it is important to note that the gaze direction with



TABLE I: Comparison between our learned active gaze control and an agent with fixed-forward sensor (100 instances
each). We report the overall average uncertainty at each target area (standard deviation of uncertainty between targets in
parentheses) and the minimum number of re-observation among all targets.

Metric Unc MinOb
Speed Ratio rv 1/30 1/20 1/10 1/7 1/30 1/20 1/10 1/7

Sensor Target number N = 2
Fixed gaze 0.664(0.059) 0.687(0.070) 0.743(0.092) 0.795(0.094) 25.01 25.00 16.49 12.39

Greedy gaze 0.611(0.062) 0.633(0.083) 0.718(0.133) 0.763(0.130) 50.34 47.83 32.12 26.74
Active gaze 0.610(0.063) 0.623(0.072) 0.737(0.108) 0.801(0.103) 49.03 49.74 30.13 20.74

Sensor Target number N = 4
Fixed gaze 0.721(0.102) 0.736(0.112) 0.783(0.126) 0.814(0.120) 9.67 9.01 7.47 6.63

Greedy gaze 0.703(0.126) 0.724(0.141) 0.785(0.152) 0.819(0.140) 15.22 13.34 10.08 8.14
Active gaze 0.696(0.121) 0.711(0.130) 0.774(0.139) 0.826(0.125) 15.66 15.12 11.98 8.13

Sensor Target number N = 6
Fixed gaze 0.750(0.112) 0.764(0.119) 0.795(0.127) 0.816(0.126) 6.28 5.71 5.41 4.76

Greedy gaze 0.746(0.139) 0.758(0.147) 0.810(0.147) 0.830(0.143) 6.80 6.81 6.00 5.83
Active gaze 0.732(0.132) 0.746(0.138) 0.794(0.139) 0.830(0.133) 9.10 8.33 7.62 6.59

Sensor Target number N = 8
Fixed gaze 0.761(0.116) 0.775(0.124) 0.803(0.128) 0.821(0.129) 4.52 4.28 4.52 4.17

Greedy gaze 0.763(0.141) 0.778(0.146) 0.815(0.147) 0.837(0.141) 4.72 4.67 4.85 4.47
Active gaze 0.753(0.131) 0.765(0.140) 0.808(0.141) 0.829(0.136) 6.47 6.07 6.32 4.98

TABLE II: Active gaze distribution over 100 instances.

Gaze direction Front Rear Left Right

Percentage 45.0% 15.2% 19.7% 20.1%

the highest value in the agent’s belief does not necessarily
guarantee the best choice. Greedy gaze selection may suffer
from inaccurate belief and the inability to effectively observe
all targets, while active gaze control learns to balance the
observation of all potential target locations instead of solely
focusing on a specific position.

We further examine the gaze distribution throughout the
persistent monitoring mission. Table II reports the gaze
distribution with |V | = 200, T = 100, N = 4 and
rv = 1/20. There, we observe that almost half of the path
segments were covered by the forward gaze (g = 1), while
the remaining three gazes had a comparable proportion,
accounting for approximately 15% − 20% each. Although
there are no bias towards any particular gaze, it appears that
the agent learned to prefer gaze that aligns with its direction
of motion. More tests are needed, but we believe that the
cause of this phenomenon is mainly twofold. Firstly, the
area of the world covered by the agent’s sensor is most
drastically changed through time along the agent’s main
moving direction, resulting in a broader sensing area to
persistently monitor the search domain. That is, the sensor
overlap between successive timesteps is larger when using
the left/right/rear gazes, thus offering the agent less new
information; this seems to result in the agent learning to
sparingly adopt those gaze directions, except when the agent
requires repeated confirmation of target positions, in favor of
generally more informative ones (front). Secondly, the agent
generally learns to actively select its gaze that points to the
nearest estimated target position, which is especially evident
when there are fewer targets, as depicted in Figure 1(b).
Since the agent learns to sequentially visit targets along the

shortest path, which often follows a straight line, the next
target is most likely to be positioned ahead of the agent.
Consequently, selecting the forward gaze emerges to be the
optimal choice in such common scenarios.

V. CONCLUSION AND FUTURE WORKS

In this work, we extend our spatio-temporal attention net-
work to allow an autonomous quadrotor to actively select its
gaze in persistent monitoring tasks. To this end, the decoder
takes the gaze-specific features of each neighboring node as
input, enabling the agent to make joint decisions on where
to go and where to look simultaneously. Our simulation ex-
periments demonstrate the effectiveness of active robot gaze
selection, showing how our approach significantly improves
the performance in almost every environment compared to
fixed-front gaze and greedy (next-best) gaze.

Future work will primarily look at more flexible gaze
control that allows the robot to adjust its gaze in a continuous
space. We also plan to train a model with task-specificity and
implement/deploy it on the drones.
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