
Figure 1. Example image from our Forest environment in conditions of 
good visibility (top) and dense fog (bottom). 
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Abstract— Simultaneous localisation and mapping of 
unexplored environments is a challenging problem in robotics, 
and while several recent works have demonstrated highly 
accurate and robust approaches, the additional challenge of 
performing this task under severely reduced visibility is 
relatively unresolved. With a view towards working to address 
this, we introduce the Low Visibility SLAM (LVS) dataset, 
comprising a total of 36 image sequences paired with ground 
truth pose data captured in simulated environments under 
varying levels of aerosol density (i.e. fog). In this work we 
describe the LVS dataset and use it to evaluate a state-of-the-
art deep learning-based SLAM algorithm, demonstrating that 
this is a challenging problem for future works in the area to 
address. The LVS dataset is available for download at 
http://kaggle.com/datasets/ebrainlab/lowvisslam. 

I. INTRODUCTION 

Simultaneous Localisation and Mapping (SLAM) 
involves an agent simultaneously building a map as it 
explores an unknown environment while tracking its pose 
within that environment, and is a significant challenge in the 
field of robotics, particularly in applications such as 
autonomous navigation, augmented reality, and 3D 
reconstruction. Over the past few decades, there have been 
numerous efforts to develop efficient SLAM algorithms 
[1][2][3] and datasets that can be used for benchmarking and 
validation. In this context, the availability of high-quality 
SLAM datasets plays a crucial role in advancing the state-of-
the-art. 

The KITTI dataset [4] has been widely used to evaluate 
SLAM methods in realistic urban driving scenarios and 
includes several sensor modalities, such as stereo cameras, 
LiDAR, and GPS, and provides ground truth poses for 
evaluation. The EuRoC dataset [5] includes various indoor 
and outdoor scenes, and provides both stereo cameras and 
IMU data for evaluating SLAM algorithms. The TUM-VI 
dataset [6] includes a wide range of indoor and outdoor 
scenes, captured using a synchronized camera and IMU 
setup, and provides ground truth poses for evaluation. 

More recently, photorealistic simulated environments 
have enabled datasets encompassing a broader variety of 
scenarios and more accurate ground truth data than can be 
collected in real environments. Tartanair [7] comprises 30 
environments built in the Unreal Engine, encompassing both 
indoor and outdoor scenarios and difficult lighting and 
weather conditions. 

SLAM algorithms have been demonstrated utilizing a 
variety of sensor modalities, including monocular imagery, 
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depth sensors, and LIDAR, however in almost all cases poor 
visibility conditions, such as fog or smoke, can severely 
impact the capability to extract and track environmental 
features, drastically reducing accuracy of both mapping and 
localisation. In this work, we aim to take a step towards 
addressing this limitation with the Low Visibility SLAM 
(LVS) dataset, intended to assess the impact of varying 
densities of visible aerosols, such as fog or smoke, on the 
performance of visual SLAM algorithms utilising monocular 
imagery. The dataset comprises 36 sequences of colour 
images along with corresponding timestamps and camera 
poses captured in simulated environments rendered in the 
Unity 3D engine. 
The 36 sequences encompass 3 paths of varying lengths 
through each of 3 environments, with each path repeated 
with 4 levels of visible aerosol density, enabling direct 
evaluation of the impact of visibility conditions on SLAM 
algorithms. Figure 1 shows a sample from the Forest 
environment of our dataset with good visibility and with 
dense fog. 

II. DATASET

A. Overview 

Three simulated environments are used in the dataset: a large 
indoor environment named “Temple”, a small indoor 
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Figure 3. Example images from each environment of the LVS dataset illustrating the four aerosol density levels simulated. Top to bottom: Temple, Cabin, 
and Forest environments. 

 

 

 
Figure 2. Test image used to measure visibility in foggy environments. The 
visibility distance in fog (bottom) is computed as the distance at which the 
contrast between the white text and black background of the test image 
drops below 5% of that measured with no fog (top) 

 
environment named “Cabin” and a large outdoor 
environment named “Forest”. Sequences are generated from 
three distinct paths through each of these environments, 
labelled “Short”, “Medium” and “long”. Each path is created 
via the manual movement of a virtual camera through the 
environment, with free movement in the x, y and z axes, and 
free rotation around the x and y axes (pitch and yaw), while 
roll remains fixed at zero. 
For each path, four sequences are generated with visible 
aerosol levels of “none”, “light”, “mid” and “dense”. In the 
two indoor environments an exponential depth-based screen-
space fog is used, while in the outdoor environment 
volumetric fog is used.  

Table I lists the three environments used, their dimensions 
and the lengths of the three paths taken through each in time 
taken in seconds and the number of images each comprises. 
Table II lists details of the three low visibility sequences 
generated for each path (each path also includes a fourth 
sequence without reduced visibility). In environments where 
depth-based fog is used, the density value refers to the 
variable v in the exponential fog equation: f = 1/edv, where f 
refers to the visibility of an object at a distance of d from the 
camera. Volumetric fog is computed as described in [8], 
with the density values listed in Table II referring to the fog 
attenuation distance in metres.  

We measure the visibility in each environment as the 
distance in metres from the test image shown Figure 2 at 
which the contrast between the light and dark regions reaches 
5% of its value under perfect visibility. Figure 3 shows a 
sample image from each environment at each visibility level. 

 

TABLE I.  DETAILS OF THE ENVIRONMENTS & PATHS IN THE LVS 
DATASET 

Environment Temple Cabin Forest 

Type Large indoor Small indoor Outdoor 

Dimensions 40m × 40m 10m × 10m 3000m × 3000m 

Path Short Medium Long Short Medium Long Short Medium Long 

Time (s) 25 49 94 20 52 82 32 60 126 

Images 107 204 394 86 219 341 133 252 528 

 

TABLE II.  DETAILS OF THE VISIBILITY CONDITIONS OF EACH 
SEQUENCE IN THE LVS DATASET 

Environment Temple Cabin Forest 

Simulated 
Aerosol Type 

Depth based 
screen-space fog 

Depth based 
screen-space fog 

Volumetric fog 

Density 
Light Mid Dense Light Mid Dense Light Mid Dense 

0.05 0.1 0.15 0.1 0.2 0.3 160 80 40 

Visibility (m) 34.3 17.5 11.7 17.5 8.9 6 198 126 87 



  

TABLE III.   EVALUATION OF DROID SLAM ON ALL 36 SEQUENCES OF OUR LVS DATASET 

 Temple Cabin Forest 

 Short Medium Long Short Medium Long Short Medium Long 

 RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max 

No Fog 5.35 11.59 4.42 10.53 12.44 30.66 0.85 2.69 1.05 1.61 1.00 2.05 9.38 20.53 254.04 778.52 26.89 70.80 

Light Fog 5.47 12.39 4.42 10.54 12.30 30.48 0.86 2.69 1.05 1.61 1.00 2.05 9.37 20.50 224.81 606.39 27.82 70.35 

Mid Fog 5.05 11.39 4.46 10.65 12.62 30.19 0.86 2.69 1.05 1.60 1.00 2.05 8.99 20.29 219.63 595.56 30.21 71.13 

Dense Fog  4.45 11.42 10.54 30.91 12.72 32.87 0.85 2.69 1.05 1.62 1.00 2.05 26.13 97.03 218.09 592.86 134.80 300.66 

 

B. Format 

The LVS dataset is available for public download at 
http://kaggle.com/datasets/ebrainlab/lowvisslam. This 
section describes the structure and format of the 
downloadable dataset. For each of the 9 paths that make up 
the dataset, there is a directory named in the format 
“[Environment][Path Length]” e.g.  “TempleMedium”. 
Inside this directory is a text file named “frames.txt” and 4 
subdirectories, each containing one sequence of images, with 
the subdirectory name referring to the aerosol density value 
of that sequence e.g. “0.1”. These 4 sequences are identical 
in every way apart from the aerosol density level, therefore 
the timestamps and poses listed in the single “frames.txt” 
file applies to all sequences. 
The file “frames.txt” contains one line for each frame 
captured along the path in the format “[Timestamp] 
[Position] [Rotation]”, where Timestamp is the time in 
milliseconds since the simulation was started, Position is the 
global camera position within the environment in metres in 
the format “[px] [py] [pz]”, and Rotation is a quaternion that 
describes global camera rotation in the format “[qx] [qy] [qz] 
[qw]”. 
Images are in stored in lossless png format in RGB colour 
with a resolution 1920×1080 pixels, and were captured at a 
rate of approximately 5 frames per second. Image filenames 
correspond to the timestamps listed in the “frames.txt” file. 
The dataset root folder also contains a camera calibration file 
in yaml format which is applicable to all sequences. 

III. EXPERIMENTS 

We perform an evaluation on our dataset using the state-of-
the-art SLAM method DROID SLAM [3], which is a deep 
learning-based approach capable of monocular, stereoscopic 
and RGBD SLAM. The results of this evaluation are listed 
in Table III. In each case, a baseline is set for each path 
using the sequence with no fog, which performance on light, 
mid and dense -fog sequences are subsequently compared to. 
In each case, we record the root mean squared error (RMSE) 
over the sequence as well as the maximum error, in metres. 

IV. CONCLUSION 

This work describes our novel Low Visibility SLAM 
(LVS) dataset, which we introduce for the evaluation of the 
performance of SLAM algorithms under poor visibility 
conditions. The dataset comprises 36 image sequences with 

ground truth localisation data, encompassing 9 routes 
through 3 simulated environments, each repeated under 4 
levels of visibility. We have evaluated a state-of-the-art 
SLAM method on our dataset, demonstrating that 
localisation and mapping under conditions of poor visibility 
is a challenging problem for future work to address. 
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