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Abstract— Visual place recognition (VPR) enables au-
tonomous systems to localize themselves within an environment
using image information. While Convolutional Neural Networks
(CNNs) currently dominate state-of-the-art VPR performance,
their high computational requirements make them unsuitable
for platforms with budget or size constraints. This has spurred
the development of lightweight algorithms, such as DrosoNet,
which employs a voting system based on multiple bio-inspired
units. In this paper, we present a novel training approach
for DrosoNet, wherein separate models are trained on distinct
regions of a reference image, allowing them to specialize in
the visual features of that specific section. Additionally, we
introduce a convolutional-like prediction method, in which
each DrosoNet unit generates a set of place predictions for
each portion of the query image. These predictions are then
combined using the previously introduced voting system. Our
approach significantly improves upon the VPR performance
of previous work while maintaining an extremely compact
and lightweight algorithm, making it suitable for resource-
constrained platforms.

I. INTRODUCTION & BACKGROUND

Visual place recognition (VPR) is an essential component
of mobile robotics, as it allows the system to localize itself
in the runtime environment using only image data [1]. The
affordability and variety of camera sensors makes VPR
localization particularly attractive for hardware restricted
robotic platforms, which are common in mobile robotics [2],
[3]. Nevertheless, VPR is a complicated task and proposed
solutions must deal with several visual challenges. The
same place can appear vastly different when visited under
different illumination [4], seasonal weather conditions [5],
viewpoints [6] and elements entering or leaving the scene
[7]. As previously mentioned, mobile robotic platforms often
operate with low-end hardware, making computational cost
yet another important consideration when designing VPR
techniques.

The importance of VPR and its variety of challenges has
resulted in a growing number of approaches being proposed
in the literature [8]. Some of the first successful solutions
[9] relied on handcrafted local feature descriptors, such as
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Scale-Invariant Feature Transform (SIFT) [10] and Speeded-
up Robust Features (SURF) [11], to build a viewpoint-robust
map of the environment. Despite their strong resilience to
viewpoint changes, local feature based approaches are sus-
ceptible to strong appearance changes. Whole-image descrip-
tors, like Histogram Oriented Gradients (HOG) [12] have
also been employed in VPR [13]. Recently, state-of-the-art
VPR performance has been achieved by using Convolutional
Neural Network (CNN) based approaches [14], as features
from the inner layers of trained CNNs have been shown to
significantly improve VPR performance [15]. Several CNN-
based techniques [16], [17], [18] have thus been successfully
employed for performing VPR.

The impressive VPR performance offered by CNN-based
approaches comes with the significant downside of a high-
computational cost, often demanding powerful graphical
processing units (GPUs) to be ran in real time [3]. This short-
coming makes these top-performing techniques unusable for
hardware-restricted platforms and several lightweight VPR
algorithms have hence emerged to address it. HOG has been
shown to be a fast VPR descriptor if used with suitable
image sizes. CoHOG [19] makes use of the efficient HOG
to encode high-entropy regions of an image, improving
resilience to viewpoint changes but significantly increasing
place matching computation times. [20] is also a region-
based method, adapting the high-performing and costly
NetVLAD [17] descriptor. CALC [21] presents itself as a
train-free, lightweight CNN model, capable of competitive
real-time VPR performance. Bio-inspired VPR approaches
attempt to replicate the efficient localization abilities of
small animals, resulting in algorithms such as [22], [23].
Recently, a lightweight VPR voting system [24] based on
multiple units, each dubbed DrosoNet, inspired by the odour
processing abilities of the fruit fly [25] has been proposed.
The system capitalizes on the inherit randomness of the
initialization and training process of individual units, where
different models might specialize better or worse on different
visual features. The combination of multiple units via the
voting mechanism attempts to eliminate the weak spots of
some units with the strengths of others. However, since each
DrosoNet is trained on the entirety of each reference image,
the sources of feature specialization are minimal.

In this work, we propose a novel, region-based approach
to train individual DrosoNets coupled with a convolution-
like prediction mechanism. By training different DrosoNets
on different sections of the reference images, we introduce
another source of variation between different units, rather
than just relying on random initialization and training. Fur-
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thermore, the matching mechanism makes each unit place
a prediction for each region in the query image, providing
more information during voting. Our approach significantly
improves VPR performance when compared to previous
work, while retaining the lightweight capabilities of the
technique.

II. METHOD

In this section, we provide implementation details of
our proposed Patch-DrosoNet algorithm. Firstly, a quick
overview of the basic functionality of DrosoNet is given.
Then, we explain the processes of splitting the images,
training the DrosoNets on different image patches and place-
matching at runtime.

A. DrosoNet Usage
As explained in [24], DrosoNet is a compact and fast

neural network image classifier inspired by Drosophila
Melanogaster, where each of the total N places is a different
class. DrosoNet works as a classification function:

D(i) = Si (1)

where i is the 32×64 input image and Si is the output score
vector of N elements, where each score corresponds to one
of the reference places. The class obtaining the highest score
in S is output as the place prediction.

While DrosoNet is a fast algorithm, its standalone VPR
performance is lower than more computationally intensive
techniques. Moreover, due to the randomness of its initializa-
tion and training, different DrosoNets exhibit high variance
in their performance with different visual conditions. Com-
bining multiple DrosoNets was hence proposed as a measure
to improve overall VPR performance, relying only the native
stochastic behaviour of the models for differentiation [24].

Our novel approach is to train multiple groups of
DrosoNets on different patches of the same image, special-
izing each group on the features of each image region.

B. Image Splitting
The image splitting takes an input image i and returns a

grid of patches of dimensions r × c, where r is the number
of rows and c the number of columns in the grid. Since
DrosoNet operates with 32 × 64 images, we first resize the
image to 32r × 64c. Within the same dataset, all images
are split in the same fashion, and a group of DrosoNets is
assigned to each patch.

C. Training
One DrosoNet group is assigned to each patch of the split

reference images and it is trained only on those particular
regions. The goal is for each DrosoNet group to specialize
on the visual features of a region of the reference images.
The total number of DrosoNets T in the algorithm is hence
riven by

T = rcz (2)

where z is an hyperparameter denoting the number of
DrosoNets to use per patch.

D. Matching
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Fig. 1: Matching process on 2× 4 grid.

At matching time, each DrosoNet evaluates all sections of
the query image, regardless of what patch it was trained on.
This process generates rc score vectors per query image per
DrosoNet D. Fig. 1 provides an example of the matching
process for a split grid of 2 × 4 regions, yielding a total of
8 score vectors per DrosoNet.

The total number of DrosoNet function calls per query
image, C, and consequently also the total number of score
vectors, can be computed by

C = Trc (3)

Note how the number of regions factor rc is squared, and
it is therefore important to use a low number of patches to
preserve computational efficiency. Finally, all the C score
vectors produced by the T different DrosoNets are merged
using the same voting system as in [24], producing a final
score vector from which the final prediction can be extracted.

The exhaustive approach to matching is required, as the
visual features of a reference region might be partially
present in a different patch of the query due to viewpoint
changes.

III. EXPERIMENTS

In this section, we provide details on our experimental
setup, such as model configurations and datasets. We then
present and discuss our results in terms of VPR performance
and computational efficiency.

A. Setup

We use the datasets in Table I, allowing for a margin of
error of 1 frame for Nordland Winter and Fall [26] and of 2
frames for Day-Right and St. Lucia [27].

We compare our proposed approach against other
lightweight techniques such as CoHOG, CALC and the
established Voting system. For the first two techniques, we
use the implementations provided in [28], while for Voting
we use the settings in [24]. For Patch-DrosoNet, we use the



TABLE I: Dataset Details

Dataset Condition Image-Grid DrosoNets
Per Patch

Number
of

Images

Nordland
Winter

Extreme
seasonal 3x1 16 1000

Nordland
Fall

Moderate
seasonal 3x1 4 1000

Day-
Right

Outdoor
Lateral Shift 1x3 8 200

St.
Lucia

Daylight;
Dynamic
Elements

4x2 8 1100

same DrosoNet configuration as in [24], with image-grids
and DrosoNets per patch as detailed in Table I.

B. Results

Assessing VPR performance, we show how the different
lightweight techniques compare in the precision-recall curves
in Fig. 2, alongside the respective area under these curves
(AUC). In the challenging appearance changes of Nordland
Winter, our proposed Patch-DrosoNet is by far the best
performing method, with more than double the AUC of all
other techniques. In the more moderate appearance changes
presented in Fall, our method is tied with the previously
established Voting system, both being the top performers. In
the viewpoint lateral shift assessment of Day-Right, Patch-
DrosoNet is once again tied with the legacy Voting, with
CoHOG achieving the best performance. Finally, our pro-
posed approach is again the top performer in the St. Lucia
dataset, displaying improved resilience against illumination
changes and dynamic elements.

In Fig. 3 we show the prediction times of the different
techniques on a dataset with 1000 reference images. Patch-
DrosoNet is the second fastest algorithm, even in the most
expensive configuration tested (C = 512 for the St. Lucia
dataset). Only Voting remains faster due to a lower number
of DrosoNet runs, but also present overall worse VPR
performance, especially in the Winter dataset. Even with
C = 2000, Patch-DrosoNet remains faster than CALC and
CoHOG, leaving open the possibility for more complex
DrosoNet grouping schemes.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel approach to train and
utilize the established DrosoNet algorithm, resulting in a
lightweight VPR technique with advantages over previous
work. The core of the method consists on dividing images
into patches and training different DrosoNet groups to spe-
cialize on different image regions, increasing differentiation
between DrosoNets. At match time, each DrosoNet outputs
its scores for each region of the query image and all score
vectors are then combined using the voting mechanism.

However, the system is not without limitations. The op-
timal image grid and number of DrosoNets varies across

different datasets, making it harder to produce a more general
solution. For improving this work, we suggest focusing on
how to identify key regions within an image, or using a
segmentation algorithm to extract different classes of patches
that can then be used for specialization.
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