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Abstract— Autonomous exploration is a crucial aspect
of robotics that has numerous applications. Most of the
existing methods greedily choose goals that maximize im-
mediate reward. This strategy is computationally efficient
but insufficient for overall exploration efficiency. In recent
years, some state-of-the-art methods are proposed, which
generate a global coverage path and significantly improve
overall exploration efficiency. However, global optimiza-
tion produces high computational overhead, leading to
low-frequency planner updates and inconsistent planning
motion. In this work, we propose a novel method to
support fast UAV exploration in large-scale and cluttered 3-
D environments. We introduce a computationally low-cost
viewpoints generation method using novel occlusion-free
spheres. Additionally, we combine greedy strategy with
global optimization, which considers both computational
and exploration efficiency. We benchmark our method
against state-of-the-art methods to showcase its superiority
in terms of exploration efficiency and computational time.
We conduct various real-world experiments to demonstrate
the excellent performance of our method in large-scale and
cluttered environments.

I. INTRODUCTION

Autonomous exploration, where robots explore un-
known environments and gather information indepen-
dently, has become increasingly popular in applications
such as mine exploration, industrial inspection, and
search and rescue operations. Robots can access areas
that are difficult for humans to reach, and reduce the
risks humans expose to in hazardous environments.

The task of autonomous exploration is to plan a path
to explore the entire unknown environment as quickly
as possible. Various exploration methods have been
proposed in recent years to tackle the task. Most of these
methods adopt a greedy strategy. [1]–[3] span RRT in
the environment and select the node with the highest
information gain to visit. [4], [5] select the frontier that
minimizes the traversal cost or the direction change of
the UAV as the goal. The greedy-based methods are
computationally efficient but insufficient in terms of
overall exploration efficiency, as they ignore global op-
timality and generate back-and-forth movements. Other
methods, such as [6], adopt a global optimization strat-
egy that finds a global tour to visit unexplored regions.
This strategy improves overall exploration efficiency but
results in high computational time, leading to low plan-
ner update frequency and inconsistent planning motion.
Moreover, existing methods generate viewpoints in a
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Fig. 1. Performing exploration task in a large-scale environment
composed of both indoor and outdoor spaces. (a) and (b): Two
different views of the online-built point cloud map, and trajec-
tory executed by the UAV (light blue line), with images display-
ing the environment. The points with the same color indicate the
same position. (c): The quadrotor platform used in the exploration.
Video demonstration of all real-world experiments is avaiable at
https://www.youtube.com/watch?v=4FqgNSbrx04

sampling way and evaluate the reward of the viewpoint
using a computationally expensive ray-casting process,
which further increases the computational cost.

Motivated by these facts, we propose a novel method
that can support fast and efficient UAV exploration in
large-scale and cluttered 3-D environments. We intro-
duce two key contributions: 1) A novel concept of
the occlusion-free sphere, which generates high-quality
viewpoints at a low computational cost. 2) Based on
the generated viewpoints, we introduce a novel strat-
egy that combines greedy with global optimization,
which finds an efficient global tour visiting high-gain
viewpoints, balancing overall exploration efficiency and
computational cost. Finally, we design a local planner
that generates safe and kinodynamically feasible trajec-
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tories for the UAV to follow. We validate the proposed
method through extensive simulation and real-world
experiments, showing that it outperforms the state-of-
the-art baselines in terms of both exploration efficiency
and computational time.

To sum up, the contributions of this paper are listed
below:

1) We propose a novel concept of the occlusion-
free sphere to generate high-quality viewpoints,
which significantly saves computational time and
improves exploration efficiency.

2) Based on the generated viewpoints, we introduce
a novel strategy that combines greedy and global
optimization, which finds an efficient global tour
to visit high-gain unexplored regions, balancing
overall exploration efficiency and computational
cost.

3) Extensive simulation experiments demonstrate the
advantages of the proposed planner over the state-
of-the-art baselines, in terms of exploration effi-
ciency and computational time.

4) Implementation of the proposed planner on a fully
autonomous quadrotor platform. Various real-world
tests show the outstanding performance of the
proposed planner in large-scale and cluttered real-
world environments.

II. RELATED WORKS

Autonomous exploration has been an active area of
research in recent years, and a variety of methods have
been proposed to tackle the problem. Sampling-based
exploration [1]–[3] is one of the classic approaches.
The approach spans a Rapidly-exploring Random Tree
(RRT) in free space. It evaluates the information gain
of the nodes in RRT by the coverage of the unknown
region, weighted with the traversal cost to reach it from
the current position. The coverage is counted by the
number of unknown voxels that fall in the sensor field
of view (FoV) and are not occluded by occupied voxels
(e.g., by ray-casting). The node with the highest gain is
selected as the goal and a traversable path to the node
is derived from the RRT. This scheme is first introduced
by the Next-Best-View Planner (NBVP) [1], and further
improved by GBP [2] and MBP [3]. In GBP [2], a
topological global map is constructed during the local
exploration process. When the local area is fully ex-
plored, or the vehicle encounters a dead end, the method
finds a path on the global map and redirects the vehicle
to unexplored areas. MBP [3] constructs RRT using
motion-primitives and produces smooth trajectories for
the vehicle to execute.

Another classic approach is frontier-based explo-
ration [4]–[7]. In frontier-based exploration, the vehicle
navigates close to the frontier, defined as the boundary
between the free and unknown space, to continue explor-
ing the unknown space. This method is first introduced

by [4], in which the closest frontier is selected as the
next goal. To achieve high-speed flight, [5] selects
the frontier in sensor FoV and minimizes the velocity
change of the vehicle. [8] analyzes the strengths and
weaknesses of the sampling-based and frontier-based
approaches. It combines them together by improving
NBVP [1] for local exploration and using a frontier-
based approach for global exploration.

The above methods are greedy-based, which select
goals that maximize the immediate reward to visit at
each planning iteration. This strategy is computationally
efficient but insufficient in terms of overall exploration
efficiency, as it produces back-and-forth planning mo-
tions. Fast UAV Exploration planner (FUEL) [6] con-
siders the global optimality. It begins by generating
viewpoints to cover frontier, followed by finding a global
tour that minimizes the global traversal cost, starting
from the current vehicle position and passing through
all selected viewpoints. The problem of finding the
global tour is formulated as a variant of the Traveling
Salesman Problem (TSP). This method outperforms the
greedy-based methods in terms of overall exploration
efficiency, but performing global optimization in the
entire environment incurs high computational overhead,
especially in large-scale environments.

In the proposed method, we improve the scheme of
FUEL [6] further by generating high-quality viewpoints
using occlusion-free spheres, and combining greedy
and global optimization strategies. We benchmark our
method against the state-of-the-art baselines: FUEL [6],
GBP [2] and NBVP [1]

III. PROPOSED PLANNER
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Fig. 2. The definition of the occlusion-free sphere.

An occlusion-free sphere is defined by its center pc ∈
R3, which lies on the target frontier, and the radius:

r = ||pc − po||2 (1)

where po ∈ R3 is the nearest neighbor obstacle point
(NN point). In this way, the interior of the sphere is
free from occupied grids. Since sphere is convex, any
line segment that connects points within the sphere
(including its surface) and the frontier is occlusion-free,
as shown in Fig. 2. By employing a viewpoint sampling



  

Fig. 3. The explored volume over time of experiments based on Livox AVIA in Building scenario (left) and Forest scenario (middle). The
explored volume over time of experiments based on Livox MID360 in Forest scenario (right). The semi-transparent region in color is formed
by the upper-bound and lower-bound of four algorithm runs, while the solid line represents the mean of these four runs.
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Fig. 4. The visualization of the two simulation scenarios. (a): The
Building scenario. (b): The Forest scenario.

strategy on the sphere’s surface, we can obtain high-
quality viewpoints without resorting to computationally
expensive ray casting techniques. We denote this process
as GenerateNewSphere(pc).

B. Viewpoints Generation

After generating an occlusion-free sphere sl, the pro-
posed method uniformly samples a set of viewpoints
on the sphere surface using a spherical coordinate sys-
tem. The yaw direction of the sampled viewpoints is
optimized to have the maximum coverage of frontier
cells, similar to [9]. We then remove the viewpoints
in unknown space and perform a sensor FoV check
to count the number of frontier cells covered by each
remaining viewpoint. Finally, we select the viewpoint
that has the highest coverage. This process is referred
to as GenerateViewpoint(sl,F).

The workflow of the entire viewpoints generation
process is presented in Alg. 1. Note that if the selected
sphere sl is smaller than a certain threshold, the pro-
posed method generates the viewpoint vb using a similar
approach to FUEL [6].

C. Global Tour Planning

We define the gain of a viewpoint v as

g(v) = r(s)e−λc(v,ξ) (2)

where r(s) is the radius of the corresponding occlusion-
free sphere. c(v, ξ) is the cost going to the viewpoint
v from the vehicle current configuration ξ. The cost is

Algorithm 1: Generate Viewpoints
1 Notation: Input frontier cells F; Viewpoints V;

Occlusion-free sphere priority queue sort by radius
S; Sphere center list C; The generated viewpoint vb;
The frontier cells covered by vb: Fv; The sphere
centers covered by vb: Sv

Input: F
Output: V

2 C = DownsampleFrontier(F);
3 for pc ∈ C do
4 si = GenerateNewSphere(pc) ;
5 S.PushBack(si);
6 end
7 while not S.empty do
8 sl = S.front();
9 S.pop();

10 vb,Fv,Sv = GenerateViewpoint(sl,F);
11 F.remove(Fv);
12 S.remove(Sv);
13 V.PushBack(vb);
14 end
15 return V

evaluated using Euclidean distance between v and ξ. λ
is the tuning factor.

The proposed method maintains a viewpoint priority
queue Q, with a fixed size of nq . As described in section
III.B, the proposed method generates a set of viewpoints
V with a total number of nv . For each viewpoint vi in
V, we compute the gain of vi defined by 2. Then we
greedily select the viewpoint with the highest gain and
push it into priority queue Q until the queue is full.
The global planning problem is to find an open-loop
tour starting from current vehicle position and passing
through viewpoints in Q. Similar to FUEL, we formulate
the problem as the Asymmetric Travelling Salesman
Problem (ATSP), a variant of TSP, and solve it using
the available algorithm [10].

IV. EXPERIMENTS

A. Benchmark Comparison
In this section, we present a comparative analy-

sis of the proposed method and three state-of-the-art
exploration algorithms, namely FUEL [6], GBP [2],
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Fig. 5. (a): Real-world experiment conducted in a forest. (b) and (c):
Two different views of the online-built point cloud map and executed
trajectory of the UAV. The green box is the bounding box of the area
to be explored.

and NBVP [1]. Fig. 4 displays the scenarios used in
the benchmark experiments: a historical building and
a cluttered forest. We conducted experiments in both
scenarios based on Livox AVIA LiDAR, which has a
[70.4◦ × 77.2◦] cone-shape FoV. We also conducted
experiments in Forest scenario based on Livox MID360,
a 360-degree FoV LiDAR. Fig. 3 shows the explored
volume of all methods over time of the above three
sets of experiments. The proposed method showcases
higher exploration rate than all benchmarked methods
throughout the entire exploration process in both sce-
narios. Table. I presents the run time of all methods.

TABLE I
RUN TIME COMPARISON

Scene Methods average run time (s)

Proposed FUEL [6] GBP [2] NBVP [1]

Building 0.155 0.419 2.821 7.456
Forest 0.288 1.139 3.423 10.078

Forest (MID360) 0.313 1.467 5.438 19.622

B. Real-world Experiments
Various real-world experiments are conducted to fur-

ther validate our method. We build a LiDAR-based
quadrotor platform. The platform is equipped with an
Intel NUC onboard computer with CPU i7-10710U,

Pixhawk flight controller, and LiDAR (Livox AVIA
or Livox MID360). First, we use the UAV to explore
a large-scale environment containing both indoor and
outdoor spaces. In this scene, we equip the UAV with
Livox MID360 LiDAR. The online-built point cloud
map and the executed trajectory are displayed in Fig. 1.
Second, we use the UAV to explore a cluttered forest
scene. In this test the UAV is equipped with Livox AVIA
LiDAR. Results are displayed in Fig. 5.

V. CONCLUSION

In this paper, we proposed a novel method to support
efficient autonomous exploration in large-scale and clut-
tered 3-D environments. We introduced the novel con-
cept of an occlusion-free sphere to generate high-quality
viewpoints at low computational cost, and adopts a novel
strategy that combines greedy with global optimization.
The proposed method demonstrated a significant im-
provement in exploration efficiency and computational
time savings. Extensive simulation and real-world ex-
periments showcased the outstanding performance of our
method in large-scale and cluttered environments.
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