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Abstract— Fiducial markers can encode rich information
about the environment and aid Visual SLAM (VSLAM) ap-
proaches in reconstructing maps with practical semantic in-
formation. Current marker-based VSLAM approaches mainly
utilize markers for improving feature detection in low-feature
environments and/or incorporating loop closure constraints,
generating only low-level geometric maps of the environment
prone to inaccuracies in complex environments. To bridge this
gap, this paper presents a VSLAM approach utilizing a monoc-
ular camera and fiducial markers to generate hierarchical
representations of the environment while improving the camera
pose estimate. The proposed approach detects semantic entities
from the surroundings, including walls, corridors, and rooms
encoded within markers, and appropriately adds topological
constraints among them. Experimental results on a real-world
dataset demonstrate that the proposed approach outperforms
a traditional marker-based VSLAM baseline in terms of accu-
racy, despite adding new constraints while creating enhanced
map representations. Furthermore, it shows satisfactory results
when comparing the reconstructed map quality to the one
reconstructed using a LiDAR SLAM approach.

I. INTRODUCTION

The primary advantage of vision sensors in Visual SLAM
(VSLAM) systems is that they need low-cost hardware
to supply rich visual and semantic information from sur-
roundings for various tasks [1]. Semantic data, which refers
to high-level information acquired from the environment,
make VSLAM tasks more robust and expand the range of
applications that can employ the reconstructed maps [2],
[3]. In this regard, utilizing fiducial markers is one of the
possible approaches to encoding semantic information into
the environment [4]. They can assist VSLAM frameworks
by providing accurate pose estimation, supplying reliable
features in low-texture environments, and enabling loop
closure detection. Recent works such as [5] and [6] pro-
pose VSLAM approaches using fiducial markers but do not
encode them with meaningful semantic information, creating
purely geometric map representations leading to inaccuracies

1Authors are with the Automation and Robotics Research Group,
Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Uni-
versity of Luxembourg, Luxembourg. Holger Voos is also associated
with the Faculty of Science, Technology, and Medicine, University
of Luxembourg, Luxembourg. {ali.tourani, hriday.bavle,
joseluis.sanchezlopez, holger.voos}@uni.lu

2Author is with the Department of Computer Science and Nu-
merical Analysis, Rabanales Campus, University of Córdoba, Spain.
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Fig. 1: The final reconstructed map of the environment using
the proposed method in a hierarchical representation: a) the
top view of the reconstructed map represented in 2D, b)
keypoints and robot trajectory records.

in camera pose estimates and the generated environmental
map in the presence of complex environments.

To fully leverage the potential of fiducial markers in
accurately identifying both the semantic elements and their
topological relationships while generating maps, this paper
proposes a VSLAM framework for monocular cameras that
utilizes the data encoded in fiducial markers for enhanced
map reconstruction, adding abstract semantic elements to
the final map along with their topological relationships.
The system is built upon UcoSLAM [5], which employs
ArUco [7] markers and visual keypoints extracted from
natural landmarks reconstructing the geometric map of the
environment. Additionally, inspired by S-Graphs [8], [9],
the proposed approach adds extraordinary information in the
form of walls, corridors, and rooms considering the data
encoded in the ArUco markers. A sample map reconstructed
by the proposed approach and its hierarchical representation
is demonstrated in Fig. 1.

Herewith the main contributions of the paper are summa-
rized below:

• An extension of marker-based VSLAM to reconstruct
environmental maps with high-level semantic features,

• The design of novel geometric constraints, namely
marker-to-wall and wall-to-room, to improve the map
quality and reduce camera localization errors,

• Validation of the proposed method using a real-world
indoor dataset showing improved performance over
marker-based VSLAM baseline.
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II. RELATED WORKS

The authors of this paper presented a comprehensive
survey on diverse VSLAM state-of-the-art works and stud-
ied their trade-offs in [10]. Accordingly, approaches like
UcoSLAM [5] and TagSLAM [6] use the capability of fidu-
cial markers for SLAM tasks. However, they cannot obtain
semantic information from the environment for an improved
map representation. Works like PL-SLAM [11] and LIFT-
SLAM [12] show accurate feature detection and tracking, but
they are computationally intensive. S3LAM [13] and YOLO-
SLAM [14] use Convolutional Neural Network (CNN)-based
semantic segmentation of generic objects and structures but
suffer from performance degradation in recognizing small or
non-regular objects. In contrast with the mentioned works,
the proposed approach creates a map of the environment
by utilizing semantic data encoded within makers instead of
employing any object detector. Accordingly, new constraints
are estimated based on mathematical modeling obtained from
keypoints, which do not significantly affect the performance
of the system.

III. PROPOSED METHOD

In order to develop a VSLAM framework with richer re-
constructed maps, the proposed approach utilizes UcoSLAM
as the baseline and modifies its components to be empowered
with a semantic data analysis procedure. The mentioned
modifications enable the detection of walls and different
types of rooms as two semantic concepts in the environment
using ArUco markers. This method also aspires to employ
visual data to represent the environment and the robot’s pose
in a single optimizable graph with an approach comparable
to S-Graphs [15].

A. Overview

The pipeline of the proposed method at time t can be
referred to four main coordinate systems: the odometry frame
of reference O, the camera coordinate system Ct, the marker
coordinate system Mt, and the global coordinate system
Gt. As the primary sensor of the system, a monocular
camera acquires a set F = {f} of frames f = {t,T, δ},
where T ∈ SE(3) is the camera’s pose obtained from the
transformation of Ct to Gt, and δ is the set of camera
intrinsic parameters. By processing each camera frame using
Oriented FAST and Rotated BRIEF (ORB) keypoint detector
and feature extractor, a set of keypoints g = {l, u,d} are
extracted in which l is the subsampling level of the image,
u is the pixel coordinates for upsampling w.r.t. the first
level, and d = (d1...dn)|di ∈ [0, 1] is the descriptor vector
with length n. Accordingly, the final constructed map of the
environment E will be represented as:

E = {K,P,M,W,R} (1)

where K = {k} ⊂ F is the set of keyframes and P = {p}
represents the set of feature points p = {x,v, d̂} extracted
from the environment with their corresponding 3D positions
x ∈ R3, viewing direction v ∈ R3, and descriptor d̂.

Additionally, M = {m} is the set of ArUco markers detected
in the environment, in which each marker m = {s,p, cc}
holds marker size (i.e., length) s ∈ R, marker pose p ∈
SE(3) calculated from Mt to Gt, and corner coordinates
cc = (c1...c4)|ci ∈ R3 values. The set of walls detected from
the environment is represented by W = {w}, in which each
wall w = {q,mw} holds the wall equation q ∈ R4 and the
attached markers list mw ⊂ M = (m1...mn)|mi ∈ N where
mi represents ArUco marker-id. Similarly, R = {r} refers to
the set of rooms found in the environment, where each room
r = {rc, rw} contains the room center point rc ∈ R3 and
the wall list rw ⊂ W = (w1...wn)|wi ∈ N that comprise
the room.

B. Semantic Entities

Walls. Each wall plane wi is extracted in the global
coordinate system Gwi =

[
Gni

Gd
]

with a normal vector
Gni =

[
nx ny nz

]T
. The vertex node of the wall is

factored in the graph as Gwi = [Gϕ,G θ,Gd], where Mϕ
and Mθ refer to the azimuth and elevation of the wall in Gt.
For each marker Gmi attached to the wall Gwi cost function
can be defined as:

cwi
(Gwi,

G mi) = ∥[Mδϕwimi
,M δθwimi

,M dwi
]T ∥2Λw̃i

(2)
where Mδϕwimi

difference between the azimuth angle of
the wall wi and its marker mi converted to its marker frame
Mi, Mδθwimi

is the difference in the elevation angles, while
Mdwi

being the perpendicular distance between the wall and
the marker, which should be zero the given marker-wall pair.

Rooms. Since perceiving a room can be difficult due
to various configurations and structures, the proposed
approach employs the data encoded in ArUco markers
attached to the room’s walls to detect the mentioned
semantic entity. In this regard, a dictionary containing the
rooms in the environment and the fiducial markers attached
to their walls are provided to feed the framework. Note
that the only information encoded in the dictionary is the
marker-ids corresponding to a room, and no additional pose
information is required to be encoded. Hence, two room
types titled ”two-wall room” and ”four-wall room” have
been considered in this work:

Two-wall Rooms (Corridors): In this case, only two
parallel walls of a room are labeled with fiducial markers.
This scenario is proper for detecting corridors or rooms with
undetectable/unreachable walls in the scene. Consequently, a
room Grx = [Gwxa1

,Gwxb1
] contains x-wall planes parallel

to the x-axis while Gry = [Gwya1
,Gwyb1

] contains y-wall
planes parallel planes to y-axis.

To compute the center of a two-wall room Grxi
, the two x-

wall plane equations are utilized along with the center point
Gci of the marker mi as follows:



Gkxi =
1
2

[
|Gdxa1

| · Gnxa1
− |Gdxb1

| · Gnxb1

]
+ |Gdxb1

| · Gnxb1

Gηxi
= Gk̂xi +

[
Gci − [ Gci · Gk̂xi ] · ˆGkxi

]
(3)

where Gηxi
is the center point of the two-wall room Grxi

and Gk̂xi is acquired from Gk̂xi = Gkxi/∥Gkxi∥. The
center point Gci of the marker is obtained using the marker
pose in frame G.

A two-wall room node is initialized using the room center,
and the cost function to minimize the two-wall room node
and their corresponding wall planes are defined below:

crxi
(Grxi ,

[
Gwxa1

,Gwxb1
,Gci

]
)

=

T,K∑
t=1,i=1

∥Gη̂xi
− f(Gw̃xa1

,Gw̃xb1
,Gci)∥2Λr̃i,t

(4)

where f(Gw̃xa1
,Gw̃xb1

,Gci) maps the wall planes to the
center point of the room using Eq. 3.

Four-wall Rooms: A four-wall room contains four wall
planes as Gri = [Gwxa1

Gwxb1

Gwya1

Gwyb1
] forming the

room. The center point of this variant of rooms can be
computed using the equation below:

Gqxi
= 1

2

[
|Gdxa1

| · Gnxa1
− |Gdxb1

| · Gnxb1

]
+ |Gdxb1

| · Gnxb1

Gqyi
= 1

2

[
|Gdya1

| · Gnya1
− |Gdyb1

| · Gnyb1

]
+ |Gdyb1

| · Gnyb1

Gρi =
Gqxi

+ Gqyi
(5)

where Gρi is the center point of the four-wall room Gri. It
should also be noted that Eq. 5 holds true when |dx1

| > |dx2
|.

The cost function to minimize four-wall room nodes and their
corresponding wall plane set is similar to a two-wall room
but with minor differences:

cρ(
Gρ,

[
Gwxai

,Gwxbi
,Gwyai

,Gwybi

]
)

=

T,S∑
t=1,i=1

∥Gρ̂i − f(Gw̃xai
,Gw̃xbi

,Gw̃yai
,Gw̃ybi

)∥2Λρ̃i,t

(6)

where f(Gw̃xai
,Gw̃xbi

,Gw̃yai
,Gw̃ybi

) maps the four esti-
mated wall planes to the center point of the four-wall room
using Eq. 5.

C. Final Graph

Fig. 2 depicts the structure of the final semantic graph pro-
duced by the proposed approach. Accordingly, the keyframes
extracted by the system are the primary sources of infor-
mation that contain both visual feature points with their
corresponding 3D coordinates and visited ArUco markers
in the scene. The topmost level of the graph retains rooms
detected in the environment using the marker-ids and the
walls that hold those markers with constraints obtained
following Eq. 4 and Eq. 6 for different rooms.

Fig. 2: The graph representation of the hierarchical architec-
ture of the proposed approach.

IV. EVALUATION

For evaluation, various real-world scenario tests were
performed using the proposed method, UcoSLAM [5] as the
baseline methodology, and S-Graph+ [9] as a Light Detec-
tion And Ranging (LiDAR)-based approach for providing
ground truth measurements.

A. Evaluation Setup

In order to evaluate the performance of the proposed
approach in real-world circumstances, we mounted a Intel®
RealSense™ Depth Camera D435 as the monocular sensor
on a Boston Dynamics Spot® robot and collected data from
an indoor environment. The robot functioned in different
office zones of two different university buildings with various
corridor and room setups, where the walls were labeled with
printed 17cm × 17cm ArUco markers. Marker-ids of the
ArUco markers placed in the environment, along with the
room unique labels, were also stored in a database file and
fed to the system.

B. Experimental Results

In order to demonstrate the accuracy of the proposed
method compared to its baseline and ground truth, Absolute
Trajectory Error (ATE) measurements have been employed
in this paper. Accordingly, the Root Mean Square Deviation
(RMSE) and Standard Deviation (STD) values of the pro-
posed and baseline approaches were compared to the ground
truth, and the approach with less value is assumed to perform
more accurately.

According to the evaluation results presented in Table I,
the proposed approach works better than its baseline in most
of the cases. The main reason for such improvement is the
ability of the proposed method to add new constraints to
the map and employ the association of semantic entities to
enhance the reconstruction of the final map.

The above-mentioned impact is more obvious in cases
such as Seq-04 where the robot starts in a corridor, enters
from one of the two doors of a room and exits from the other
door to continue in the same corridor, and as a result, no loop
closure using keypoints and markers is performed. While our



TABLE I: Evaluation results of the proposed method on the
collected dataset. The best results are boldfaced.

Method

Proposed UcoSLAM [5]

Sequence Duration RMSE STD RMSE STD

Seq-01 08m 53s 8.038 3.058 8.130 3.035
Seq-02 09m 29s 6.883 3.598 6.930 3.633
Seq-03 16m 05s 2.266 0.894 2.687 1.335
Seq-04 10m 25s 3.787 1.848 5.822 2.726
Seq-05 09m 37s 1.255 0.763 1.238 0.751
Seq-06 23m 34s 2.676 1.524 2.720 1.536

(a) S-Graphs+ on Seq-04 (b) S-Graphs+ on Seq-06

(c) UcoSLAM [5] on Seq-04 (d) UcoSLAM [5] on Seq-06

(e) Proposed method on Seq-04
showing only wall 3D points

(f) Proposed method on Seq-06
showing only wall 3D points

Fig. 3: Reconstructed maps using the proposed method, the
baseline, and the ground truth.

method, which creates wall and room constraints, correctly
identifies the corridor and its walls to provide better results.
This improvement can be clearly seen in Fig. 3, where our
method is able to reconstruct a more accurate map of the
environment when compared with the baseline. Moreover,
it is able to extract meaningful semantic and topological
information from the environment.

V. CONCLUSIONS

This paper presented a Visual SLAM approach that em-
ploys a monocular camera as the sensor and the data en-
coded within fiducial markers placed in the surroundings
for accurate pose estimation and semantic segmentation. The
proposed method can detect three practical semantic entities
in the environment, including walls, corridors, and rooms,

and provide a hierarchical graph with high-level semantic
data. Additionally, it can reconstruct a more accurate map of
the environment by adding more topological constraints and
employing the relations among mentioned semantic entities
found in the scene.

As for future works, the authors plan to encode the
environment with the mentioned invisible fiducial markers
introduced in [16] and equip the robot with a proper sensor
setup to interpret them, making the improved version of the
proposed approach able to accomplish Simultaneous Local-
ization and Mapping tasks with the new type of markers.
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