
Skeleton-Based Recognition of Traditional Greek
Dance Steps using Machine Learning Algorithms

Konstantinos Tragiannis∗, Thanasis Balafoutis†, Vasiliki Balaska‡ and Antonios Gasteratos§
Department of Production and Management Engineering, Democritus University of Thrace

Xanthi, Greece
Email: ∗ktragian@pme.duth.gr, †abalafou@pme.duth.gr, ‡vbalaska@pme.duth.gr, §agaster@pme.duth.gr

Abstract—Classification of dance types and moves is a chal-
lenging application in the field of action recognition. Owing to
its vast applicability and robustness regardless of the image
background, skeleton-based recognition is increasingly attracting
the attention of scholars in the robotics community. This paper
presents a novel dataset of videos of five individuals performing
five different types of traditional Greek dances, which can be
utilized for that purpose. In addition, we create a benchmark
for future work by performing a comparative study of different
classifiers’ performance on dance steps from this dataset. For
that purpose, the dataset has been divided into steps, with each
step consisting of a time series of skeleton data extracted from
the videos. We use an assortment of classifiers based on different
artificial neural network (NN) types, including convolutional and
recurrent NNs as well as traditional ones such as Gaussian naive
Bayes, decision trees, support vector machines, and k-nearest
neighbors. For each classifier, we have obtained the classification
accuracy first on steps from the same dance type and then on
the entire dataset. We assess the classifiers’ performance both on
randomly split test sets and when performing cross-validation.
Out of the classifiers used, the best performance is achieved by
the CNN-based classifier.

Index Terms—Skeleton-based action recognition, Neural Net-
works, Intangible Cultural Heritage, Dance Classification

I. INTRODUCTION

Performance arts are an important part of Intangible Cultural
Heritage (ICH). In many countries, the local traditional music
and dances are a focal point of national pride and identity.
Therefore, the documentation and analysis of folkloric dances
are crucial to ensure that the knowledge of how to perform
them can be preserved through time. Technological advance-
ment and the increased availability of devices and software,
such as high-resolution video cameras as well as the ability
to store video content on the cloud, have made it easier to
document, store and disseminate content, therefore making the
preservation of ICH more feasible [1]. Another advancement
that has aided in preserving and analyzing ICH material is the
advent of stereo vision algorithms, cameras, and sensors [2].
These have been utilized in various tasks, including action
recognition and pose estimation [3]. Skeleton-based action
recognition, in particular, utilizes skeleton data in the form
of the coordinates of certain body joints, which have been
extracted from a stereoscopic video to track the movement of
a human body. The task of skeleton-based action recognition
can be applied to the classification of traditional Greek dance
steps. This is possible because each type of traditional Greek

dance typically consists of a fixed choreography of repeated
steps following the same pattern [1], [4].

In this paper, a novel dataset is introduced comprising
videos of five individuals performing five different traditional
Greek dances. The process of dividing each video into steps
constituting the particular dance’s choreography has been
carried out. In that way, each frame of the videos in the
dataset is assigned to one of 22 possible classes, each of the
classes corresponding to specific movements of the limbs. 3-
dimensional skeleton data were provided by a ZED 2 stereo
camera, which was used to record the videos. Our contribution
lies in creating a dataset of performances of traditional dances
that had not been recorded before. In addition, we create a
benchmark for future research by comparing the performance
of several types of classification algorithms applied to the
dataset.

The rest of this paper is structured as follows: in Section
II, past contributions and advancements on the topics of
skeleton-based action recognition as well as on the analysis
and identification of Traditional Greek Dances are reviewed.
In Section III, the methodology used to film the dataset
and to implement each classification algorithm is presented.
Section IV presents the results of our experiments, which
are discussed in Section V. Finally, the conclusions of our
work are presented in Section VI. In addition, the possibilities
for future work stemming from the results of this paper are
discussed in that section.

II. RELATED WORK

This section contextualizes our research by reviewing the
relevant literature, identifying gaps in the field, and situating
our study within a broader scholarly conversation. By provid-
ing a foundation for our argument, this section helps readers
understand the current state of the field and the rationale for
our work. Within the field of computer vision, action recogni-
tion is an area of research that presents many challenges in the
present day. In order to successfully recognize the actions of
a human, certain other challenging secondary tasks must be
implemented, such as human detection and pose estimation.
Several data types can be utilized for this purpose, including
RGB, depth-based, and skeleton-based data [5].

Owing to the advancement of depth cameras and sensors,
such as the Kinect sensor, Skeleton-based data have been
increasingly used recently for action recognition [6], as they

can describe the positions of joints or larger body parts.
In previous work, several Artificial Neural Network (ANN)
architectures such as Recurrent Neural Networks (RNNs) [7],
as well as Convolutional Neural Networks (CNNs) [8] [9] have
been used to process this data type. In [10], the aforementioned
data were utilized to recognize dance gestures. The classifier
achieved a significantly high average accuracy.

More specifically, analysis and classification of traditional
Greek dance types and moves or steps have been examined
in past research endeavors, often focusing on identifying key
postures [11]. In [12], the results of multiple depth cameras
are fused to create more accurate skeleton data. Later, these
are divided into posture classes using k-means clustering, and
then a classifier is used to place posture sequences into classes
corresponding to dance figures. In [13], multiple depth sensors
are again used to partition the dance sequence into periods and
patterns. More recently, in [3], classification algorithms are
used on skeleton data to identify dance poses and classify the
type of dance performed based on the poses found in certain
important frames. In [14], a deep CNN architecture was used
for dance pose identification on RGB data.

The work which shares the most similarities with ours is
probably the one presented in [4], where the performances
of several algorithms are compared on the task of classifying
different postures, which are part of traditional Greek dance
choreography. Each frame, represented by skeleton data, is
assigned to a posture class, and the sequence of postures is
used to describe the dance steps. The classifiers used are k-
nearest neighbors, naive Bayes, discriminant analysis, decision
trees, support vector machines, and ensemble methods. There
are two main differences from our work: 1) we attempt to
classify the different dance steps using information from the
whole sequence of frames corresponding to a step rather than
classifying each frame individually, and 2) our work expands
on these traditional classifiers with various ANN-based ones.

III. METHODOLOGY

A. Pre-processing

To record the videos for our dataset, the ZED 2 stereo
camera [15] was used and the recording process was as
follows. Every video begins with the dancer at one end of
the camera frame and ends when they reach the other end.
In each video, we captured only one dancer performing, and
the same audio file was used for each type of dance. In many
traditional Greek dances, it is typical for the series of steps
to be performed in a circle. To determine the impact of the
angle at which the dancer faces the camera on the success of
classification, we recorded two subsets of videos. One with
the dancers performing the steps in a straight line and always
facing the camera and one with them dancing in a semicircle.
The videos in the second subset start and end with the dancers’
bodies roughly vertical to the camera and facing toward the
camera in the middle of the video.

When recording, the camera produces two videos (left and
right), one for each of its two image sensors, each with a
resolution of up to 2208 × 1242 pixels and a frame rate of

up to 100 fps. With the aid of an AI model, depth data are
generated by utilizing the imagery from these two videos. For
our dataset, the left video, as well as the depth data, were kept.
The settings used were a frame rate of 60 frames per second
and a resolution of 1280× 720.

To perform classification on the steps, we annotated the
videos dividing them into their constituent steps. Since all
videos from each dance genre follow the same rhythm, it was
possible to use the timing of the beat in the audio track to
annotate all of the videos of the same dance automatically.
The audio tracks had to be manually divided into beats because
we noticed the rhythm of the audio files not being completely
steady throughout their length.

The camera provided us with a software development kit
(SDK) that performs human recognition in each frame of
the video and creates 3-dimensional (x0, x1, x2) skeleton
coordinates, which correspond to the position of the joints
relative to the camera. Out of the available formats for the
skeleton joint coordinates, we chose the one with 34 points.
The layout of the skeleton joints is presented in Figure 1 using
a sample from the dataset. Since our goal was to classify each
step based on the movements performed by the dancer, we
performed a series of transformations on the coordinates to
keep only the relevant information :

• First, we translated the coordinates. The new center
of coordinates was moved to the middle between the
hips at the beginning of each step. Let x(j,t) =
[x(j,t),0, x(j,t),1, x(j,t),2] be the coordinate vector of the
joint with label j at time t and xc be the vector of
coordinates of the new center. Considering that the left
and right hip are represented by labels 18 and 22,
respectively:

xc =
x(18,0) + x(22,0)

2
. (1)

The new vectors of coordinates x
′

(j,t) are calculated as
follows:

x
′

(j,t) = x(j,t) − xc. (2)

• To eliminate the influence of the angle at which the
dancer faces the camera, we rotated the coordinates
around the y-axis making the body always face forward.
The angle ϕ of counter-clockwise rotation is calculated
as follows:

ϕ = tan−1(
x(18,0),2

x(18,0),0
). (3)

After that, the rotation matrix Ry(ϕ) is calculated and
the rotated coordinates are the product of this matrix and
the old coordinates:

x
′′

(j,t) = Ry(ϕ)x
′

(j,t) (4)

• Finally, we scaled the coordinates, making the distance
between the two hips always identical so that the dancer’s
identity does not make a difference. Assuming the actual
distance between the hips is l and the desired distance is
L:

x
′′′

(j,t) = x
′′

(j,t)

L

l
, (5)

where l is calculated as the Euclidean distance between
x(18,0) and x(22,0).

B. Composition of the Dataset

The dataset consists of videos of five individuals performing
five types of Greek traditional dance. The dance types that
are included are named Mazomenos, Gikna, Dilbera, and
Tapeinos, as well as a dance originating in the Epirus region
of Greece called Sta Dyo. The choreography of each type of
dance consists of a cycle that is repeated. We divided each
cycle into steps, each unique step corresponding to a class. A
few of these steps are repeated twice within a cycle or shared
between several dances.

The dataset contains 3494 dance steps belonging to 30
different step classes (6 for each dance). The classes were
labeled with numbers from 0 to 29. Each step sample contains
the 3-dimensional coordinates for 34 joints of the human body
for each frame from the beginning to the end of the step. The
composition of the dataset is presented in Table II. To ensure
that the speed of the dancing does not have an impact on the
classification as well as that each sample contains the same
number of parameters, we performed downsampling, keeping
20 randomly selected frames for each step, which was the
lowest amount of frames in any of the original steps. The
selected frames are placed in chronological order. The number
of parameters in each sample is derived as follows:

parameters = #Coordinates·
#Joints ·#Frames

(6)

Overall, this results in 2040 (3 coordinates, 34 joints, and
20 frame samples) parameters. For the rest of the equations,
we consider that the coordinate vectors symbolx

′′′

(j,t)are con-
catenated into a vector v = [v1, v2, ..., v2040].In Table I, we
present a description of the series of steps performed in each
cycle for the dance Mazomenos:

TABLE I
DESCRIPTION OF THE STEPS OF MAZOMENOS

Throughout this dance the arms are raised
perpendicular to the body.

Step
number Step Description

0
This step begins with the right foot raised.
The dancer moves their foot to the right
ending with their legs open.

1
The dancer moves their left foot in front
of their right foot ending with their feet
crossed.

2 The dancer moves their right foot to the
right ending with their legs open.

3 The dancer raises their left foot.
4 The dancer lowers their left foot.
5 The dancer raises their right foot.

C. Experimental Setup and Classification Algorithms

For this work, nine classification algorithms are imple-
mented in the Python programming language. Five of these

TABLE II
COMPOSITION OF THE DATASET

Dance
Type

Step La-
bels

Number
of
Dance
Steps

Mazomenos 0-5 683
Gikna 6-11 876
Dilbera 12-17 629
Tapeinos 18-23 798
Sta Dyo 24-29 508

Fig. 1. Labels and coordinates (x,y) in mm of the skeleton joints at the
beginning of step 0 of Mazomenos. Note the slightly raised right foot of the
dancer.

algorithms are types of Neural Networks, while the other four
are traditional classification algorithms. We used the Pytorch
library for the neural networks and the Sklearn library for the
rest of the algorithms. Wherever a split between the training
and test data was performed randomly, we used 20% of the
original dataset as the test set. For the neural networks, we
used the Adam optimizer with a learning rate of 0.001 and a
batch size of 32. We ran the machine learning algorithm for
1000 epochs each time with the learning process set to stop
early if the accuracy had not improved in the last 100 epochs.
The algorithms we used are the following:

Gaussian Naive Bayes: The Naive Bayes algorithm is a
classification algorithm that calculates the conditional proba-
bility of a sample belonging to a class C given its coordinates
v = [v1, v2, ..., v2040]. This probability P (C|v) is calculated
using Bayes’ theorem [16].

The probability of each class P (C) is calculated to be the
number of samples belonging to the class |C| divided by the
total size of the dataset |D|. The coordinates v are considered

conditionally independent, therefore:

P (v|C) =

2040∏
i=1

P (vi|C). (7)

In the Gaussian version of the algorithm used here, each
coordinate’s value is assumed to follow a Gaussian distribu-
tion.

Decision tree: The decision tree classification algorithm
classifies samples using a series of rules based on data features
and represented as nodes. According to [16], the initial dataset
is divided into smaller subsets by the nodes, with the ultimate
goal of each subset representing a single class.

k-Nearest Neighbors: For each step with coordinates v, the
k-Nearest neighbor algorithm finds the subset N of k steps
with the smallest Euclidean distance to v and places v in the
class with the most instances inside N [17].

In our work, we tried a range of values for k, concluding
that the classification performance improves for smaller values,
with k = 1 giving the best results. We did not perform a
random split into training and test data for this algorithm.
Instead, for each step in the original dataset, we found its
k-nearest neighbors from the entire dataset.

Support Vector Machine (SVM): SVM algorithms use a
margin that separates space into two areas, each of them
corresponding to a class [18]. New samples are placed in one
of the two classes based on which boundary of the margin
they are closer to. When using a linear kernel as we do here,
the boundaries of this margin are two hyperplanes described
by the following equations:

wT v − b = 1

wT v − b = −1.
(8)

Ideally, the aim is for all instances of each of the two
classes to be on opposite sides of the margin and the two
boundaries of the margin as far away from each other as
possible. Since finding such boundaries is often impossible,
we apply an optimization process that penalizes them for every
sample on the wrong side of the boundary.

SVMs can be expanded to be usable in cases with more than
two classes. In our case, a one-versus-one scheme is used,
where a separate SVM classifier is used for every different
pair of classes. Every sample is assigned to one of the two
classes, and that class receives a vote. In the end, each sample
is placed in the class which receives the most votes.

Feedforward Neural Network(FNN): This is the most basic
type of artificial neural network, whose architecture does not
include any cyclical connections [19]. The first component of
our network is a linear layer, whose output is the product of a
table W of learnable weights and the input coordinates v. This
is followed by nonlinearity in the form of a Rectified Linear
Unit (ReLU) layer and then another linear layer. The hidden
size of the output vector of the first and second layers and the
input of the second and third layers was set to 1024.

Recurrent Neural Network (RNN): An RNN is a neural
network that includes at least one node whose output is con-

nected to its input, forming a cycle. This makes RNNs suitable
for treating sequential data since it is possible for information
about previous parts of the sequence to be passed down using
that cyclical connection. Usage of RNNs usually involves
parameter sharing, where the same neurons are used for all
points in the sequence, greatly reducing the computational
cost. In our architecture, the network’s hidden state results
from a unidirectional Elman RNN [20] with a nonlinearity im-
plemented with a hyperbolic tangent function. The hidden state
is then fed into a linear layer. The following equations describe
the network. For all RNNs let it = [x

′′′

1,t, y
′′′

1,t, z
′′′

1,t, x
′′′

2,t, ...z
′′′

34,t]
be the input vector at time t, ht be the hidden state and ot

the output:

ht = tanh(Wihit +Whhht−1 + bh)

ot = tanh(Wyht + by).
(9)

The input for this network and the other two recurrent net-
works (GRU and LSTM) is two-dimensional. One dimension
is the sequence length equal to 20, and the other equals 102
(#OfCoordinates · #OfJoints). We set the size of the
hidden state to 128. Both in this Neural Network and the GRU
and LSTM networks, we use the network output at the end of
the sequence as the output of the whole RNN.

Long Short-term Memory (LSTM) Neural Network:
Conventional RNN architectures often face the problem of
long-term dependencies. This means that information passed
through the network from previous points in the sequence
tends to either increase disproportionately or be reduced to
the point of being irrelevant after many time steps. The LSTM
Network is an RNN architecture that was introduced with the
aim of solving this problem [21]. Therefore, it is particularly
suitable for dealing with long sequences of data. To achieve
that, the LSTM uses three gates (input, output, and forget)
which influence what information from previous time steps is
kept or discarded. Each gate g uses the input and hidden state
vectors as its inputs:

gt = σ(Wigit +Whght + bg), (10)

where σ represents the sigmoid function. The weight tables
Wig and Whg are different for each gate. Our network uses a
unidirectional LSTM network with one layer. Both the size of
the hidden state and the output of the LSTM were set to 128.
That output is then fed into a linear layer.

Gated Recurrent Unit (GRU) Neural Network: Similarly
to the LSTM, the GRU is an RNN architecture that utilizes
gates to deal with long-term dependencies [22]. Their main
difference lies in reducing the number of gates from three to
two, as the GRU lacks an output gate. For our Network, we
used a single-layer unidirectional GRU and a hidden state with
a size of 128, followed by a linear layer.

Convolutional Neural Network (CNN): Finally, we imple-
mented an architecture using a CNN as its main component.
CNNs have been shown to perform well on various computer
vision tasks and therefore have been widely utilized [14]. Our
architecture comprises a layer that performs one-dimensional

convolution on the coordinates in the input, followed by a
Rectified linear unit and a linear layer. We performed the
convolution on three vectors v0, v1, v2 each of them with
680 (#ofJoints·#ofFrames) values. The number of output
channels was set to 32. The output of channel n is calculated
using the following equation:

out(n) = bias(n) +

2∑
k=0

weight(n, k) ∗ vk, (11)

where weight(n, k) are the vectors of weights and ∗ is the
cross-correlation operator. We used a kernel with size=5 and
stride=1 and no padding.

IV. EXPERIMENTAL RESULTS

Firstly, we tried the classification algorithms on five subsets,
each consisting of the steps of one dance type. Afterward, we
performed cross-validation by averaging out the results from
several test sets. Each test set contained steps from a different
dancer who had been excluded from the training set. The
accuracy metrics of the algorithms when performing cross-
validation are presented in Table III. From these results, it
is apparent that most algorithms struggle to differentiate the
steps of Sta Dyo. This can be explained by the fact that two
Sta Dyo step classes (24 and 26) have similar movements.

TABLE III
AVERAGE ACCURACY OF THE CLASSIFICATION

ALGORITHMS FOR EACH DANCE TYPE.

Classifier Mazomenos Gikna Dilbera Tapeinos Sta Dyo
GNB 90.24% 89.22% 92.74% 91.84% 79.07%
DTree 88.54% 88.30% 92.74% 93.51% 65.58%
RNN 96.48% 88.18% 93.89% 95.96% 85.81%
FNN 98.46% 97.16% 98.64% 99.54% 93.62%
LSTM 98.17% 91.83% 97.96% 98.72% 90.88%
GRU 98.58% 92.39% 97.87% 98.78% 90.72%
k-Near 92.32% 88.85% 91.52% 94.20 % 82.05%
SVM 97.53% 97.68% 87.92% 95.89% 88.38%
CNN 97.86% 96.91% 98.15% 99.23% 93.93%

Subsequently, we obtained accuracy metrics for the algo-
rithms when they were applied to a randomly split dataset
and performed cross-validation on the CNN algorithm, which
showed the best accuracy. To assess whether the similarity
between the steps belonging to different classes affects the per-
formance, we compared the recall metrics of different classes,
presented in Figure 2. Out of 11 steps with recall lower than
0.6, only classes 6, 10, and 11 do not have an equivalent step
with identical movement. Step 27 is also roughly identical to
steps 14 and 20. To improve the performance of the classifiers,
we merged the step classes with identical movements. This
resulted in the total number of classes being reduced to 22.

The accuracy of each Neural Network based classifier is not
deterministic due to the stochastic nature of the optimizer and
the random way the dataset is split into training and test data.
Therefore, we decided to run the training process 100 times
for each network and keep the average accuracy in order to
get a result that accurately represents the capabilities of each

algorithm. The results of these tests are presented in Table IV.
All training was run on an NVIDIA GeForce RTX 3080 GPU.

TABLE IV
AVERAGE ACCURACY OF EACH CLASSIFICATION

ALGORITHM ON THE ENTIRE DATASET

Classifier

Accuracy
(Ran-
dom
split)

Accuracy
(Cross-
Validation)

k-Near 88.86% 64.23%
DTree 81.12% 66.01%
GNB 79.63% 67.02%
RNN 81.26% 67.63%
FNN 94.31% 75.65%
GRU 91.99% 76.57 %
LSTM 92.24% 76.86 %
SVM 94.62% 79.55%
CNN 96.95% 87.67%

V. DISCUSSION

The results we obtained regarding the accuracy of each algo-
rithm seem to confirm what is known about their strengths and
limitations. Out of the traditional machine learning algorithms,
the relatively accurate performance of the SVM algorithm
is unsurprising since it is well suited for classification tasks
on small datasets [18]. We expected neural networks with a
recurring element to be suitable for this task because of the
importance of the position of each joint relative to time. There-
fore, it is unsurprising that the GRU and LSTM Networks,
which can deal with long-term dependencies, outperform the
FNN. The CNN achieved the best performance, which can be
explained by the fact that it is the only one that can consider
the relationships between nearby joints. Nevertheless, it should
be noted that modeling these relationships and optimizing the
architecture of the neural networks is beyond the scope of this
paper, which limits the resulting accuracy of the algorithms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the performance of different
classifiers, when applied to identifying dance steps. For this
purpose, we introduced a novel dataset consisting of videos
of people performing traditional Greek dances and annotated
the videos separating each performance into steps. Our exper-
imental results indicate that out of the classifiers we utilized,
the CNN-based classifier outperforms all other algorithms both
on randomly split data and when performing cross-validation.
Our results can serve as a benchmark for researchers who use
the dataset in the future. A probable direction for future work
would be expanding the dataset to include new dances and
more individuals, as well as possibly adding videos with more
than one performer. Another possibility would be working on
refining the architecture of the CNN classifier, such as by
adding depth to it, as well as comparing its performance to
other Neural Network architectures not included in this paper.

Fig. 2. Recall metric for each class when using the CNN algorithm and performing cross-validation.

ACKNOWLEDGMENT

This research has been co-financed by the European Re-
gional Development Fund of the European Union and Greek
national funds through the Operational Program Competitive-
ness, Entrepreneurship, and Innovation, under the call RE-
SEARCH – CREATE – INNOVATE (project code: T2E∆K-
04800).

REFERENCES

[1] I. Rallis, A. Voulodimos, N. Bakalos, E. Protopapadakis, N. Doulamis,
and A. Doulamis, “Machine learning for intangible cultural heritage: a
review of techniques on dance analysis,” Visual Computing for Cultural
Heritage, pp. 103–119, 2020.

[2] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos, “Review of stereo
vision algorithms: from software to hardware,” International Journal
of Optomechatronics, vol. 2, no. 4, pp. 435–462, 2008.

[3] E. Protopapadakis, A. Voulodimos, A. Doulamis, S. Camarinopoulos,
N. Doulamis, and G. Miaoulis, “Dance pose identification from motion
capture data: a comparison of classifiers,” Technologies, vol. 6, no. 1,
p. 31, 2018.

[4] N. Bakalos, E. Protopapadakis, A. Doulamis, and N. Doulamis, “Dance
posture/steps classification using 3d joints from the kinect sensors,” in
2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Com-
puting, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl
Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,
2018, pp. 868–873.

[5] H.-B. Zhang, Y.-X. Zhang, B. Zhong, Q. Lei, L. Yang, J.-X. Du, and
D.-S. Chen, “A comprehensive survey of vision-based human action
recognition methods,” Sensors, vol. 19, no. 5, p. 1005, 2019.

[6] L. Wang, D. Q. Huynh, and P. Koniusz, “A comparative review of
recent kinect-based action recognition algorithms,” IEEE Transactions
on Image Processing, vol. 29, pp. 15–28, 2019.

[7] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1110–
1118.

[8] C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based action recognition
with convolutional neural networks,” in 2017 IEEE International Con-
ference on Multimedia & Expo Workshops (ICMEW). IEEE, 2017, pp.
597–600.

[9] Y. Du, Y. Fu, and L. Wang, “Skeleton based action recognition with
convolutional neural network,” in 2015 3rd IAPR Asian conference on
pattern recognition (ACPR). IEEE, 2015, pp. 579–583.

[10] M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classification of dance
gestures from skeleton animation,” in Proceedings of the 2011 ACM
SIGGRAPH/Eurographics symposium on computer animation, 2011, pp.
147–156.

[11] E. Protopapadakis, A. Voulodimos, A. Doulamis, and S. Camarinopou-
los, “A study on the use of kinect sensor in traditional folk dances
recognition via posture analysis,” in Proceedings of the 10th Inter-
national Conference on PErvasive Technologies Related to Assistive
Environments, 2017, pp. 305–310.

[12] A. Kitsikidis, K. Dimitropoulos, S. Douka, and N. Grammalidis, “Dance
analysis using multiple kinect sensors,” in 2014 international conference
on computer vision theory and applications (VISAPP), vol. 2. IEEE,
2014, pp. 789–795.

[13] A. Kitsikidis, N. Boulgouris, K. Dimitropoulos, and N. Grammalidis,
“Unsupervised dance motion patterns classification from fused skeletal
data using exemplar-based hmms,” International Journal of Heritage in
the Digital Era, vol. 4, no. 2, pp. 209–220, 2015.

[14] N. Bakalos, I. Rallis, N. Doulamis, A. Doulamis, E. Protopapadakis, and
A. Voulodimos, “Choreographic pose identification using convolutional
neural networks,” in 2019 11th International Conference on Virtual
Worlds and Games for Serious Applications (VS-Games). IEEE, 2019,
pp. 1–7.

[15] “Zed 2 stereo camera description,” https://www.stereolabs.com/zed-2/,
accessed: 2023-05-03.

[16] D. M. Farid, L. Zhang, C. M. Rahman, M. A. Hossain, and R. Stra-
chan, “Hybrid decision tree and naı̈ve bayes classifiers for multi-class
classification tasks,” Expert systems with applications, vol. 41, no. 4,
pp. 1937–1946, 2014.

[17] N. Bhatia et al., “Survey of nearest neighbor techniques,” arXiv preprint
arXiv:1007.0085, 2010.

[18] S. Abe, Support vector machines for pattern classification. Springer,
2005, vol. 2.

[19] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[20] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

