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  Chapter 1 
 

1 Introduction 
 
 

1.1 Context 

 
The constraint satisfaction problem (CSP) [Mack92], [Dech92], framework has been 

proposed as a generic way of modeling discrete constrained decision problems, for which 
generic deduction and search algorithms can be defined. The framework, as well as the 
associated algorithms, assume that all the components of the instance to consider 
(variables, domains of possible values, constraints to satisfy) are completely known 
before modeling and solving it and do not change either during or after modeling and 
solving. 

However, it has been observed for a long time that such assumptions do not hold in 
many situations, especially when one has to deal with uncertain and dynamic 
environments. 

One of the difficulties of problem modeling and solving in uncertain and dynamic 
environments comes from the fact that, on the one hand, the knowledge about the real 
world is often incomplete, imprecise and uncertain and, on the other hand, the real world 
and the knowledge about it may change during or after modeling and solving. 

For example, to be more concrete, consider a travel management system (TMS), 
embedded in a car, in charge of the management of all the features of a long travel: route, 
stops, reservations, rendezvous, car refueling and maintenance, etc. The physical system 
is the car. The user is the car driver. Its physical environment is the road, the traffic, the 
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weather, etc. Other entities are hotels, restaurants, garages, other people and similar 
TMSs. Uncertainty may come from the car (actual state of its components), from the 
environment (actual state of the road, future traffic and weather), and from the other 
entities (actual availability). Changes may occur at any time from the driver herself 
(changes in her goals or in her current plan), from the car (unexpected breakdowns), from 
the environment (traffic jams), and from the other entities (unavailability, rendezvous 
cancellations). 

In order to handle uncertainties and changes in constraint solving (like the TMS 
problem described above), a number of different modeling frameworks have been 
proposed. The research work reported in this thesis, considers one of these frameworks; 
the stochastic constraint satisfaction problem (SCSP) proposed in [Walsh02]. In this 
framework, we include in the problem definition the available knowledge about possible 
changes from the real world. The SCSP framework is inspired from the stochastic 
satisfiability problem (SSAT) [Littm01]. 

In SCSPs, variables are divided into controllable ones (decision variables) and 
uncontrollable ones (state variables). State variables, also called stochastic variables, 
follow a probability distribution. The expressional power of the SCSP can be help us 
model situations where there are probabilistic estimations about various uncertain events, 
such as stock market prices, energy demands, weather conditions, etc. SCSPs have very 
recently been introduced and only a few solution methods have been proposed. 

In this thesis, we give the semantics for stochastic constraint programming, we 
present the existing complete algorithms presented in bibliography and we propose 
advanced solution methods for SCSPs. Finally, we compare the introduced algorithms 
with existing ones via a set of experiments. 
 

1.2 Organization of the thesis 

 
This thesis consists of six chapters. Chapter1 includes a general introduction in the 

area of interest. The related work that has been done in CSPs and SCSPs is reviewed in 
Chapter 2. We also describe here the main algorithms that have been proposed for solving 
stochastic constraint satisfaction problems. 

In Chapter 3 we propose a generalized arc consistency (GAC) algorithm for SCSPs. 
This algorithm extends the GAC algorithm AC2001/3.1 with specialized features, so that 
SCSPs can be handled. We also explain how arc consistency reasoning can be performed 
when “chance” constraints are present in a problem.  
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In Chapter 4 we introduce new search algorithms for solving stochastic constraint 
satisfaction problems. We first identify and correct a flaw in the forward checking (FC) 
algorithm given in [Walsh02]. We also describe an improved version of FC which 
exploits probabilities in a more “global” way and in this way results in stronger pruning.  
Then we introduce a Maintaining Arc Consistency (MAC) algorithm for SCSPs. In 
contrast with [Walsh02], where the given algorithms can only handle binary constraints, 
our MAC algorithm is able to handle constraints of any arity. The chapter ends with the 
presentation of some heuristics which increase the efficiency of the above search 
algorithms. 

A set of experiments is presented in Chapter 5. These experiments demonstrate the 
effect that the flaw has in the FC algorithm of [Walsh02] and depict the achieved 
improvement of our new FC algorithm. We also present experiments with FC that uses 
arc consistency as a preprocessing technique. 

Finally Chapter 6 concludes the thesis by summarizing the results reported here and 
gives some directions for future work. 
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  Chapter 2  
 

2 Related Work 
 
2.1 Constraint Satisfaction Problems 

 
A wide variety of problems in Artificial Intelligence, Engineering, Databases, and 

other disciplines can be modeled as Constraint Satisfaction Problems (CSPs). Constraints 
are a declarative knowledge representation formalism that allows for a compact and 
expressive modeling of many real life problems. In the next few paragraphs we present 
some formal definitions about classical constraint satisfaction problems, and we introduce 
the basic techniques for processing and solving CSPs. 
 

2.1.1 Basic definitions 

 
A constraint satisfaction problem (CSP) consists of a finite set of variables, X1, X2, 

…, Xn each associated with a domain D1,  D2, …, Dn of possible values, and a set of 
constraints, C1, C2, …, Cm. Each constraint Ci is a relation, defined on some subset of the 
variables, and specifies the allowed combination of values for that subset. Alternatively, 
constraints can be described by mathematical expressions or by computable procedures. 
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For each constraint, the number of variables it constraints is called the arity of the 
constraint and the variables themselves are called the scope of the constraint. 

Constraints can be either binary over pairs of variables, or non-binary over any 
number of variables. For example consider a CSP with n variables X1, X2, …, Xn each 
with domain {1, 2,…, n}. The constraint C1(X1, X2) = {(0, 0), (0, 2), (2, 3)} is a binary 
constraint between variables X1 and X2. The constraint C2(X1, X2, X3) = {(0, 0, 0), (0, 1, 
2), (2, 0, 3)} is an example of a non-binary constraint. A binary CSP is one with only 
binary constraints. A non-binary CSP is one with constraints of any arity. Another simple 
type of constraint is the unary constraint, which restricts the value of a single variable. 
Every unary constraint can be eliminated simply by pre-processing the domain of the 
corresponding variable to remove any value that violates the constraint. 

A state of the problem is defined by an assignment of values to some or all of the 
variables. An assignment that does not violate any constraints is called a consistent or 
legal assignment. A complete assignment is one in which every variable is mentioned. A 
solution is an assignment of a value to each variable from its domain such that all the 
constraints are satisfied. Typical tasks in constraint satisfaction problems are to determine 
whether a solution exists, to find one or all solutions, and to find an optimal solution 
relative to a given cost function. 

An example of a constraint satisfaction problem is the well known k-colorability 
problem. The task is to color, if possible, a given graph with k colors only, such that any 
two adjacent nodes have different colors. A constraint satisfaction formulation of this 
problem associates the nodes of the graph with variables, the possible colors are their 
domains and the not-equal constraints between adjacent nodes are the constraints of the 
problem. 

Another known constraint satisfaction problem concerns satisfiability (SAT), which is 
the task of finding a truth assignment to propositional variables such that a given set of 
clauses expressed in CNF are satisfied. For example, given the two clauses (A∨B∨ ¬C), 
(¬A∨D), the assignment of false to A, true to B, false to C, and false to D is a satisfying 
truth value assignment. 

The structure of a constraint problem is usually depicted by a constraint graph or 
hyper-graph in the case of a non-binary problem, whose nodes represent the variables, 
and any two nodes are connected if the corresponding variables participate in the same 
constraint scope. In the k-colorability formulation, the graph to be colored is the 
constraint graph. In the SAT example above, the constraint graph has A connected with 
D, and A, B and C are connected to each other. 
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Constraint problems have proven successful in modeling mundane cognitive tasks 
such as vision, language comprehension, default reasoning and abduction, as well as in 
applications such as scheduling, design, diagnosis, and temporal and spatial reasoning. 
The reason is that constraints allow for a natural, expressive and declarative formulation 
of what has to be satisfied, without the need to say how it has to be satisfied. 

In general, constraint satisfaction tasks (like finding one or all solutions, or the best 
solution) are computationally intractable (NP-hard). Intuitively, this mean, that in the 
worst case all the possible variable instantiations may need to be considered before a 
solution (or best solution) can be found by a complete algorithm. However, there are 
some tractable classes of problems that allow for efficient solution algorithms even in the 
worst-case. Moreover, also for non-tractable classes, many techniques exhibit a good 
performance in practice in the average case. 
 

2.1.2 Complete Techniques for solving CSPs 

 
Given the finiteness of the domain for each variable, it is always possible in principle 

to find a solution for a CSP if one exists. In order to get an assignment of variables from 
the respective domains, we simply check all possible assignments exhaustively to see 
whether there is any assignment satisfying all the constraints simultaneously. This 
technique is called generate and test in logic programming. The backtracking search 
technique is an improvement over generate and test. 
 
Backtracking Search 

 
In Backtracking search (BT), variables are instantiated one by one. After each 

instantiation of a variable, all the constraints involving this variable and already 
instantiated variables will be checked. If some constraint is not satisfied, we avoid 
instantiating the rest of the variables because the constraint will still be violated no matter 
how we instantiate them. In other words, a portion of the search space is pruned. A new 
value will be chosen for the current variable. If none of the values for the variable satisfy 
the related constraints, backtracking occurs. The algorithm goes back to the previous 
variable and chooses a new value for it. The process will be repeated until a solution is 
found or there is no choice of value for the first variable in which case there is no 
solution. Given a CSP (V,D,C), an illustrative algorithmic schema for the backtracking 
paradigm is shown below: 
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1. algorithm BackTracking((V,D,C)) 

2. Begin 

3.    i  0; backtracking  false; 

4. while i < n do //exists variable not assigned yet 

5. if not backtracking then 

6. Choose a variable vi from V-{v0, v1, ..., vi-1}; 

7. Si  Dj; //Si is the current domain 

8. Endif 

9. backtracking  true; 

10. while Si is not empty do // search a value for current vi 

11. choose a value {a} for vi; 

12. Si  Si – {a}; 

13. enforce certain level of consistency on the network; 

14. If the domain of some variable is empty then 

15. restore the domains of variables V-{v0, v1, ..., vi-1}; 

16. else //{a} is a valid value for vi 

17. backtracking  false; 

18. break; 

19. Endif 

20. Endwhile 

21. if backtracking then 

22. i  i - 1; // backtrack to the previous variable 

23. If i < 0 then break; endif 

24. else i  i + 1; // progress to the next variable 

25. Endwhile 

26. if backtracking then report unsatisfiability; 

27. else report the solution; 

28. End 

 

To implement BT based on the algorithm described above, we must check in line 13, 
if the current value {a} of variable vi, satisfies all the constraints with previous variables. 
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Forward Checking Search 
 

One way to make better use of constraints during search is called Forward Checking 
(FC). The main idea in this algorithm is to reduce domains of unassigned variables based 
on assigned variables. Each time a variable is instantiated, we delete from the domains of 
the uninstantiated variables all of those values that conflict with the current variable 
assignment. Whenever a variable X is assigned, the Forward Checking process looks at 
each unassigned variable Y that is connected to X by a constraint and deletes from Y ’s 
domain any value that is inconsistent with the value chosen for X. The main advantage of 
this algorithm is that identifies dead ends without having to try them via backtracking. To 
implement FC we can use the procedure for BT. The FC algorithm comes up, if we 
substitute line 13 with a call to the following function: 

 
Function UPDATE (unlab_vars,doms,cons,current_var_assignment)   

//returns an updated set of domains 

   for each variable y in unlab_vars do 
      for each value v in Dy’  do 

if(y,v) is incompatible with current_var_assignment 

with respect to the constraint between y and the 

current variable  

    then Dy’ ← Dy’ – {v} 

  end 
   end  
   return doms’ 

 
 

Arc Consistency (AC) 
 

Although forward checking detects many inconsistencies, it does not detect all of 
them. It does not look far enough ahead in the search tree. Constraint propagation is the 
general term for propagating the implications of a constraint on one variable onto other 
variables. The idea of arc consistency provides a fast and efficient method of constraint 
propagation that is substantially stronger than FC. The key idea for this technique is to 
delete values from a variable’s domain if these values are not supported by any value in 
some constraint. Thus, applying arc consistency, at each step of the search, results in 
early detection of an inconsistency that is not detected by pure forward checking. We can 
also apply AC as a pre-processing step before we start search. In that way we can reduce 
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the size of the search tree and in some cases we can discover inconsistent problems. We 
now give a more formal definition of arc consistency 

Given a constraint network (V, D, C), the support of a value a ∈  Di under a constraint 
cij is a value b ∈  Dj such that (a, b) satisfies constraint cij . The value a is viable with 
respect to cij if it has a support in Dj . A constraint cij is consistent along the arc (xi, xj ), if 
and only if every a ∈  Di has a support in Dj . A constraint cij is arc consistent if and only if 
it is consistent along both arcs (xi, xj ) and (xj, xi ), A constraint network is arc consistent 
if and only if every constraint in the network is arc consistent. 

AC-3 [Mac77a, McG79] is a generic popular arc consistency algorithm. To enforce 
arc consistency in a constraint network, a key task of AC-3 is to check the viability of a 
value with respect to any related constraint. REVISE-3(xi, xj) is a function that removes 
those values in Di without any support in Dj under cij. If any value in Di is removed when 
revising (xi, xj ), all binary constraints (or arcs) pointing to xi, except cij, will be revised. 
A queue Q is used to hold these arcs for later processing. It can be shown that this 
algorithm is correct. The AC-3 algorithm is shown below: 

 
1. Algorithm AC-3 

2.    Begin 

3.       Q  {(xi, xj)| cij∈C or cji∈C, i≠ j} 
4.       while Q not empty do 

5.          select and delete any arc (xi, xj) from Q 

6.          if REVISE-3(xi, xj) then 

7.             Q  Q ∪  {(xk, xi)| cki∈C, k≠ j} 
8.    End 

 

1. Procedure REVICE-3(xi, xj) 

2.    Begin 

3.       DELETE  false 

4.       for each a ∈ Di do 
5.          if there is no b ∈ Dj such that cij(a,b) then 
6.             delete a from Di 

7.             DELETE  true 

8.       return DELETE 

9.    End 
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Maintaining Arc Consistency (MAC) 
 

MAC [Dan94] is a backtracking search scheme (see Figure 1) for finding a solution 
of a constraint network. Under this scheme, the network is pre-processed by an AC 
algorithm. During search, arc consistency is maintained (i.e. enforced) after each 
instantiation of a variable in order to prune the search space. This process of maintaining 
arc consistency is denoted by mac; in the figure, V denotes the most recent assigned 
variable. Obviously, a key component of mac is AC. 

 
 

Given an AC algorithm, it is easy to design a MAC algorithm based on it. For 
instance, MAC3 is derived from AC3 by embedding AC3 in backtracking search. To 
implement MAC we can use the procedure for BT. The MAC algorithm comes up, if we 
substitute line 13 with a call to the AC-3 algorithm. 
 

2.2 Constraint Solving in Uncertain and Dynamic Environments 

 
In classic CSPs, the associated algorithms assume that all the components of the 

instance to consider (variables, domains of possible values, constraints to satisfy) are 
completely known before modeling and solving it and do not change either during or 
after modeling and solving. 

However, it has been observed for a long time that such assumptions do not hold in 
many situations, specifically each time one has to deal with uncertain and dynamic 
environments. 

Figure 1. MAC Schema 



 15

One of the difficulties of problem modeling and solving in uncertain and dynamic 
environments comes from the fact that, on the one hand, the knowledge about the real 
world is often incomplete, imprecise and uncertain and, on the other hand, the real world 
and the knowledge about it may change during or after modeling and solving. 

In order to handle uncertainties and changes in constraint solving, a number of 
different modeling frameworks have been proposed. In the next paragraphs we review 
some of them. 
 

2.2.1 Dynamic constraint satisfaction problem (DCSP) 

 
The DCSP was proposed in [Mitt90] and is defined as a sequence of CSPs, each one 

derived from some changes in the definition of the previous one. These changes may 
affect any component in the problem definition: variables (additions or removals), 
domains (changes in the intensional definitions, value additions or removals in case of 
extensional definitions), constraints (additions or removals), constraint scopes (variable 
additions or removals), or constraint definitions (changes in the intensional definition, 
tuple additions or removals in case of extensional definition). Because domains can be 
seen as unary constraints, because variables are implicitly added or removed with all the 
constraints that apply to them, and because any change in a component can be seen as a 
removal followed by an addition, all these changes can be basically expressed in terms of 
constraint additions or removals. 

 

2.2.2 Conditional constraint satisfaction problem (CCSP) 

 
The basic objective of the CCSP framework [Sabin98] is to model problems whose 

solutions do not all have the same structure, i.e. do not all involve the same set of 
variables and constraints. Such a situation occurs when dealing with product 
configuration or design problems, because the physical systems that can meet a set of 
user requirements do not all involve the same components. More generally, it occurs 
when dealing with any synthesis problem, such as design, configuration, planning, 
scheduling, etc. In a CCSP, the set of variables is divided into a set of mandatory 
variables and a set of optional ones. The set of constraints is also divided into a set of 
compatibility constraints and a set of activity constraints. Compatibility constraints are 
classical constraints. Activity constraints define the conditions of activation of the 
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optional variables as a function of the current assignment of other mandatory or optional 
variables. 

Constraints are activated only if their variables are activated too. When solving a 
CCSP, the structure of the problem (activated variables and constraints) may change as a 
function of the current assignment. Thus, a CCSP can be considered as a particular case 
of DCSP where all the possible changes are defined by the activity constraints. However, 
the methods that have been proposed so far for dealing with DCSP and with CCSP are 
very different from each other. 

 

2.2.3 Open constraint satisfaction problem (OCSP) 

 
In an OCSP, the allowed values in domains, as well as the allowed tuples in relations, 

may not be all known when starting a search for a solution [Falt02]. They may be 
acquired online when no solution has been found with the currently known values and 
tuples. Such a situation occurs each time the acquisition of information about domains 
and relations is a costly process that needs heavy computation or requests to distant sites. 
Thus, an OCSP can be considered as a particular case of DCSP where all the possible 
changes result in extension of the domains and relations. 
 

2.2.4 Mixed constraint satisfaction problem (MCSP) 

 
The MCSP was proposed in [Farg96] to model decision problems under uncertainty 

about the actual state of the real word. In an MCSP, variables are divided into 
controllable ones (decision variables) that are under the control of the decisional agent 
and uncontrollable variables (state variables) that are not under its control. In such a 
framework, a basic request may be to build a decision (an assignment of the decision 
variables) that is consistent whatever the state of the world (the assignment of the state 
variables) is. 

The model of the possible changes takes the form of uncontrollable variables, besides 
usual controllable ones, which may take any value in their domains. A usual objective is 
to produce a solution that is valid whatever the values taken by uncontrollable variables. 
As an example, let us consider the small instance in Figure 2 and let us assume that 
variables x, y and t are controllable (we can decide upon their value), but that variable z is 
uncontrollable (it may take any value: 1 or 2). An arc connecting two values denotes that 
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they are compatible. In such conditions, {x = 1, y = 3, t = 3} is a solution because it is 
consistent with any value of z, but {x = 1, y = 2, t = 2} is not because it is not consistent 
with z = 2. 

 
Figure 2 

 

2.2.5 Probabilistic constraint satisfaction problem (PCSP) 

 
The PCSP was proposed in [Farg93] to model decision problems under uncertainty 

about the presence of constraints. In a PCSP, a probability of the presence in the real 
world is associated with each constraint. In such a framework, a basic request may be to 
produce an assignment that maximizes its probability of consistency in the real world. A 
PCSP is a particular case of the valued constraint satisfaction problem (VSCP). 

The model of the possible changes takes the form of a probability of existence 
associated with each constraint. A usual objective is, to produce a solution whose 
probability of validity is maximum. As an example, let us consider the small instance in 
Figure 3, slightly different from the one in Figure 2 (one less value in z’s and t’s 
domains) and let us assume the following independent probabilities of existence 
associated with each constraint: P(x < y) = 0.2, P(y ≠  z) = 1, P(y = t) = 0.6 (the constraint 
y ≠  z is certain; the other ones are uncertain).In these conditions, some solutions are 
certainly not valid, such as {x = 1, y = 2, z = 2, t = 1} (constraint y ≠  z violated). Other 
ones have a non null probability of validity such as {x = 1, y = 1, z = 2, t = 2} (constraint 
x < y and y = t violated; P = (1 – 0.2)(1 – 0.6) = 0.32). But, the one whose probability of 
validity is maximum is {x = 1, y = 1, z = 2, t = 1} (constraint x < y violated; P = 1 – 0.2 = 
0.8). 
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Figure 3 

 
 

2.2.6 Stochastic constraint satisfaction problem (SCSP) 

 
The SCSP framework was proposed in [Walsh02] to model decision problems under 

uncertainty about the actual state of the real world, in the same way as the MSCP 
framework. The SCSP framework is inspired from the stochastic satisfiability problem 
(SSAT). As in an MCSP, variables in a SCSP are divided into controllable ones (decision 
variables) and uncontrollable ones (state variables). The main difference from a MCSP is 
that a probability distribution is associated with the domain of each state variable. 
Another difference is that the requests can freely alternate state and decision variables. In 
such, a framework, a basic request may be, as in the PCSP framework, to build a decision 
(an assignment of the decision variables) that maximizes the probability of consistency in 
the real world. 

In this model, a probability distribution is associated with the domain of each 
uncontrollable variable. A usual objective is thus to produce a solution whose probability 
of validity is maximum. As an example, let us consider the same instance in Figure 2, but 
let us assume now that variables x, z, and t are controllable, but the variable y is 
uncontrollable. In such conditions, there is no solution that is valid whatever the value 
taken by y. However, let us assume the following probability distribution over y’s 
domain: P(y = 1) = 0.1, P(y = 2) = 0.7, P(y = 3) = 0.2. In these conditions, some solutions 
are certainly not valid, such as, {x = 1, z = 1, t = 1} (inconsistency whatever the value 
taken by y). Other ones have a non null probability of validity such as {x = 1, z = 2, t = 3} 
(consistency if y = 3; P = 0.2). But, the one whose probability of validity is maximum is 
{x = 1, z = 1, t = 2} (consistency if y = 2; P = 0.7). 
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2.2.7 Branching constraint satisfaction problem (BCSP) 

 
The BCSP was proposed in [Fowl00] to model sequential decision problems under 

uncertainty about the arrival of new elements (objects, tasks…). In a BCSP, at each step, 
present variables are assigned when possible, taking into account variables that will be 
added to the problem definition. A utility is associated with each assigned variable. At 
each step, a probability of addition is associated with each absent variable. The request is, 
at each step, to assign the added variable with a value that maximizes the global expected 
utility. 

The model of possible changes takes the form of a probability of addition to the 
current problem associated with each possible additional variable. Moreover, each 
variable may be assigned or not and a gain is associated with its assignment. The 
objective is to produce an assignment of the current variables that maximises the 
expected value of its extension to the additional variables. As an example, let us consider 
the same instance in Figure 3 and let us assume that variables y and z are present in the 
current problem, but that variables x and t are not. They may be added, x with a 
probability of 0.8 and t with a probability of 0.6. Moreover, let us assume that the gains 
associated with the assignment of variables x, y, z and t are respectively equal to 10, 20, 
5, and 10. In such conditions, the expected gain associated for example with the 
assignment {y = 1, z = 2} is equal to 20 + 5 + 0.6 10 = 31, because it will be possible to 
assign t, but not possible to assign x. In fact, the optimal assignment is {y = 2} (z not 
assigned) with an expected gain equal to 20 + 0.8 10 + 0.6 10 = 34, because it will be 
possible to assign both x and t. 
 

2.3 Stochastic Constraint Programming 

 
In this Section we will review with more details the work that has been done in the 

SCSP framework, which is the main subject of this thesis. As mentioned, many decision 
problems contain uncertainty. Data about events in the past may not be known exactly 
due to errors in measuring or difficulties in sampling, whilst data about events in the 
future may simply not be known with certainty. For example, when scheduling power 
stations, we need to cope with uncertainty in future energy demands. As a second 
example, nurse rostering in an accident and emergency department requires us to 
anticipate variability in workload. As a final example, when constructing a balanced bond 
portfolio, we must deal with uncertainty in the future price of bonds. To deal with such 
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situations, [Walsh02] proposed an extension of constraint programming called stochastic 
constraint programming in which we distinguish between decision variables, which we 
are free to set, and stochastic (or observed) variables, which follow some probability 
distribution. 
 

2.3.1 Stochastic constraint programs 

 
The simplest possible model is a one-stage stochastic constraint satisfaction problem 

(stochastic CSP) in which the decision variables are set before the stochastic variables are 
given values. This models situations in which we must act now and observe later. For 
example, we have to decide now which nurses to have on duty and will only later 
discover the actual workload. We can easily invert the instantiation order if the 
application demands, with the stochastic variables set before the decision variables. 
Constraints are defined (as in traditional constraint satisfaction) by relations of allowed 
tuples of values. Constraints can, however, be implemented with specialized and efficient 
algorithms for consistency checking. The stochastic variables independently take values 
with probabilities given by a probability distribution. 

A one stage stochastic CSP is satisfiable iff there exists values for the decision 
variables so that, given random values for the stochastic variables, the probability that all 
the constraints are satisfied equals or exceeds a threshold θ. The probabilistic satisfaction 
of constraints allows us to ignore worlds (values for the stochastic variables) which are 
rare. Note that the definition reduces to that of a traditional constraint satisfaction 
problem if we have no stochastic variables and θ = 1. 

In a two stage stochastic CSP, there are two sets of decision variables, Vd1 and Vd2, 
and two sets of stochastic variables, Vs1 and Vs2.  The aim is to find values for the 
variables in Vd1, so that given random values for Vs1, we can find values for Vd2, so that 
given random values for Vs2, the probability that all the constraints are satisfied equals or 
exceeds θ. Note that the values chosen for the second set of decision variables Vd2 are 
conditioned on both the values chosen for the first set of decision variables Vd1 and on the 
random values given to the first set of stochastic variables Vs1. This can model situations 
in which items are produced and can be consumed or put in stock for later consumption. 
Future production then depends both on previous production (earlier decision variables) 
and on previous demand (earlier stochastic variables). An m stage stochastic CSP is 
defined in an analogous way to one and two stage stochastic CSPs.  
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A stochastic constraint optimization problem (stochastic COP) is a stochastic CSP 
plus a cost function defined over the decision and stochastic variables. The aim is to find 
a solution that satisfies the stochastic CSP which minimizes (or, if desired, maximizes) 
the expected value of the cost function. 
 

2.3.2 Production planning example 

 
The following stochastic constraint program taken from [Walsh02], models a simple 

m quarter production planning problem. In each quarter, we will sell between 100 and 
105 copies of a book. To keep customers happy, we want to satisfy demand in all m 
quarters with 80% probability. At the start of each quarter, we decide how many books to 
print for that quarter. This problem is modelled by an m stage stochastic CSP. There are 
m decision variables, xi representing production in each quarter. There are also m 
stochastic variables, yi representing demand in each quarter. These take values between 
100 and 105 with equal probability. There is a constraint to ensure 1st quarter production 
meets 1st quarter demand: 

x1 ≥  y1 
There is also a constraint to ensure 2nd quarter production meets 2nd quarter demand 

plus ant unsatisfied demand or less any stock: 
x2 ≥  y2 + (y1 – x1) 

And there is a constraint to ensure jth quarter production (j ≥  2) meets jth quarter 
demand plus any unsatisfied demand or less any stock: 
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We must satisfy these m constraints with a threshold probability θ = 0.8. This 
stochastic CSP has a number of solutions including xi = 105 for each i. (i.e. always 
produce as many books as the maximum demand). However, this solution will tend to 
produce books surplus to demand which is undesirable. 

Suppose storing surplus book costs $1 per quarter. We can define an m stage 
stochastic COP based on this stochastic CSP in which we additionally minimize the 
expected cost of storing surplus books: 

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

m

j

j

i
ii yx

1 1

0,min  



 22

Note that a solution to a stochastic CSP or COP defines how to set later decision 
variables given the values for earlier stochastic and decision variables. 
 

2.3.3 Semantics 

 
A stochastic constraint satisfaction problem is a 6-tuple (V, S, D, P, C, θ) where V is a 

list of variables, S is the subset of V which are stochastic variables, D is a mapping from 
V to domains, C is a set of constraints over V, and θ is a threshold probability in the 
interval [0, 1]. Constraints are defined by a set of variables and a relation giving the 
allowed tuples of values. Variables are set in the order in which they appear in V. Thus, in 
an one stage stochastic CSP, V contains the decision variables and then the stochastic 
variables. In a two stage stochastic CSP, V contains the first set of decision variables, the 
first set of stochastic variables, then the second set of decision variables, and finally the 
second set of stochastic variables. 

A policy is a tree with nodes labelled with variables, starting with the first variable in 
V labelling the root, and ending with the last variable in V labelling the nodes directly 
above leaves. Nodes labelled with decision variables have a single child, whilst nodes 
labelled with stochastic variables have one child for every possible value. Edges in the 
tree are labelled with values assigned to the variable labelling the node above. Leaf nodes 
are labelled with 1 if the assignment of values to variables along the path to the root 
satisfies all the constraints and 0 otherwise. Each leaf node corresponds to a possible 
world and has an associated probability; if si is the ith stochastic variable on a path to the 
root, di is the value given to si on this path, (i.e. the label of the following edge), and 
prob(si = di) is the probability that si = di, then the probability of this world is simply: 

Πi  prob(si = di) 
The satisfaction of a policy is defined as the sum of the leaf values weighted by their 

probabilities. A policy satisfies the constraints iff its satisfaction is at least θ. A stochastic 
CSP is satisfiable iff there is a policy which satisfies the constraints. The optimal 
satisfaction of a stochastic CSP is the maximum satisfaction of all policies. For a 
stochastic COP, the expected value of a policy is the sum of the objective valuations of 
each leaf node weighted by their probabilities. A policy is optimal if it satisfies the 
constraints and maximizes (or, if desired, minimizes) the expected value. 

Consider again the production planning and a two-quarter policy that sets x1 = 104 
and if y1 > 100 then x2 = y1 + 1, else y1 = 100 and x2 = 100. We can represent this policy 
by the following (partial) tree: 
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By definition each of the leaf nodes in this tree is equally probable. There are 62 leaf 
nodes, of which only 7 are labeled 0. Hence, this policy’s satisfaction is (36-7)/36, and 
the policy satisfies the constraints as this just exceeds θ = 0.8. 
 
 

2.3.4 Complete algorithms 

 
In this section we present the backtracking and forward checking algorithms for 

solving stochastic CSPs as they appear in [Walsh02]. Note that both algorithms are 
defined for binary constraints only. 

 
 
Backtracking 
 
We assume that variables are instantiated in order. However, if decision variables occur 
together, they can be instantiated in any order. On meeting a decision variable, the 
backtracking (BT) algorithm tries each value in its domain in turn. The maximum value is 
returned to the previous recursive call. On meeting a stochastic variable, we try each 
value in turn, and return the sum of the all answers to the subproblems weighted by the 
probabilities of their occurrence. At any time, if instantiating a decision or stochastic 
variable breaks a constraint, we return 0. If we manage to instantiate all the variables 
without breaking any constraint, we return 1. 
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       Procedure BT(i, θl, θh) 
       if i > n then return 1 

       θ := 0 

       q := 1 

       for each dj  ∈ D(xi) 
          if θh ∈ S then 
             p := prob(xi  dj) 

             q := q – p 

             if consistent(xi  dj) then 

                θ := θ + p × BT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
θ-θ,

p
q- θ-θ,1 hli  

                if θ > θh then return θ 
             if θ + q < θl then return θ 
          else 

             if consistent(xi  dj) then 

                θ := max(θ, BT(i+1, max(θ, θl), θh)) 

                if θ > θh then return θ 
        return θ 

 
Upper and lower bounds, θh and θl are used to prune search. By setting θl = θh = θ, we 

can determine if the optimal satisfaction is at least θ. Alternatively, by setting θl = 0 and 
θh = 1, we can determine the optimal satisfaction. The calculation of upper and lower 
bounds in recursive calls requires some explanation. Suppose that the current assignment 
to a stochastic variable returns a satisfaction of θ0. We can safely ignore other values for 

this stochastic variable if θ + p ×  θ0 ≥  θh. That is, if 
p
θ-θθ h

0 ≥ . This gives the upper 

bound in the recursive call to BT on a stochastic variable. Alternatively, we cannot hope 
to satisfy the constraints adequately if θ + p ×  θ0  + q ≤  θl as q is the maximum that the 

remaining values can contribute to the satisfaction. That is, if 
p

q-θ-θ
θ l

0 ≤ . This gives 

the lower bound in the recursive call to BT on a stochastic variable. Finally, suppose that 
the current assignment to a decision variable returns a satisfaction of θ. If this is more 
than θl, then any other values must exceed θ to be part of a better policy. Hence, we can 
replace the lower bound in the recursive call to BT on a decision variable by max(θ, θl). 
Because of these bounds, value ordering heuristics can reduce search. For decision 
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variables, we should choose values that are likely to return the optimal satisfaction. For 
stochastic variables, we should choose values that are more likely. 

To better understand how bounds are updated when a new recursive call to BT is 
made, and how they are exploited to avoid needless exploration of some parts of the 
search tree, the reader should note that bounds provide information about the already 
achieved satisfaction at each point in search and also about the maximum satisfaction that 
can be achieved thereafter. If the already achieved satisfaction plus the maximum 
satisfaction that can be achieved by exploring the rest of the problem is less than the 
desired threshold then the algorithm backtracks to the previously instantiated decision 
variable and tries another value for it. To put it simply, this means that the currently 
explored policy cannot achieve the threshold, so a new policy must be explored. 
Similarly, in the case where we seek the maximum satisfaction, if the currently explored 
policy cannot offer higher satisfaction than the maximum satisfaction that has been 
already discovered then the algorithm abandons it and moves on to explore a different 
policy. 

 
 

Forward Checking 
 
The Forward Checking (FC) procedure is based on the BT algorithm. On instantiating a 
decision or stochastic variable, the FC algorithm checks forward and prunes values from 
the domains of future decision and stochastic variables which break constraints. Checking 
forwards fails if a stochastic or decision variable has a domain wipeout (dwo), or if a 
stochastic variable has so many values removed that we cannot hope to satisfy the 
constraints. As in the regular forward checking algorithm, we can use an 2-dimensional 
array, prune(i, j) to record the depth at which the value dj for the variable xi  is removed by 
forward checking. This is used to restore values on backtracking. In addition, each 
stochastic variable, xi has an upper bound, qi on the probability that the values left in its 
domain can contribute to a solution. When forward checking removes some value, dj 
from xi, we reduce qi by prob(xi  dj), the probability that xi takes the value dj. This 
reduction on qj is undone on backtracking. If forward checking ever reduces qi to less 
than θl, we backtrack as it is impossible to set xi and satisfy the constraints adequately. 
 
Procedure FC(i, θl, θh) 
   if i > n then return 1 

   θ := 0 
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   for each dj ∈ D(xi) 
      if prune(i, j) = 0 then 

         if check(xi  dj, θl) then 
            if xi ∈ S then 
               p := prob(xi  dj) 

               qi := qi - p 

               θ := θ + p × FC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
θ-θ,

p
q- θ-θ,1 hli  

               restore(i) 

               if θ + qi < θl then return θ 
               if θ > θh then return θ  
            else 
               θ := max(θ, FC(i+1, max(θ, θl), θh)) 

               restore(i) 
               if θ > θh then return θ  
         else restore(i) 
   return θ 

 

 

Procedure check(xi  dj, θl) 

   for k := i + 1 to n 

      dwo := true 

      for dl ∈ D(xk) 
         if prune(k, l) = 0 then 

            if inconsistent(xi  dj, xk  dl) then 

               prune(k, l) := i 

               if xk ∈ S then 
                  qk := qk – prob(xk  dl) 
                  if qk < θl then return false 
            else dwo := false 
      if dwo := false return false 
   return true 

 

Procedure restore(i) 
   for j = i + 1 to n 
      for dk ∈ D(xj) 
         if prune(j, k) = i then 

            prune(j, k) = 0 

         if xj ∈ S then qj := qj + prob(xj  dk)  
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Chapter 3 
 

3 Generalized Arc Consistency 
for Stochastic CSPs 

 
In this section we describe a generalized arc consistency algorithm for SCSPs. First 

we review the AC (and GAC) algorithms for classical CSPs that are used as basis. Then 
we present the GAC algorithm for stochastic CSPs and introduce a pruning rule that can 
be used to delete values from certain decision variables. Finally, we discuss how GAC 
can be enhanced to handle “chance” constraints, an important extension of the SCSP 
framework. 

 
 

3.1 AC2001/3.1 for Binary Constraints 

 
The use of constraint propagation is the main feature of any constraint solver. All the 

constraint solvers use propagation as a basic step. It is thus of prime importance to 
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manage the propagation in an efficient and effective fashion. Each improvement to a 
constraint propagation algorithm has an immediate effect on the performance of the 
constraint solving engine. 

The AC-3 algorithm presented in Chapter 2 is a common generic constraint 
propagation algorithm. Unfortunately, the worst case time complexity of AC-3 is O(ed3), 
where e is the number of constraints and d is the size of the maximum domain in a 
problem. A refinement of AC-3 with better worst case time complexity is the AC2001/3.1 
algorithm [Bess05].  

AC2001/3.1 is a worst case optimal arc consistency algorithm based on AC-3. It 
preserves the simplicity of AC-3 while improving on AC-3 in efficiency both in terms of 
constraint checks and in terms of cpu time. The worst case time complexity of 
AC2001/3.1 is O(ed2), with space complexity O(ed). In the next section we will present 
AC2001/3.1 with more details. 

The worst case time complexity of AC-3 is based on a naive implementation of line 5 
of the REVISE-3 procedure described in Chapter 2 (b is always searched from scratch). 
However, from the analysis we know a constraint (xi, xj) may be revised many times. The 
key idea to improve the efficiency of the algorithm is that we need to find from scratch a 
support for a value a ∈  Di only in the first revision of the arc (xi, xj), and store the support 
in a structure Last((xi, a), xj). When checking the viability of a ∈  Di in the subsequent 
revisions of the arc (xi, xj), we only need to check whether its stored support Last((xi, a), 
xj) is still in the domain Dj. If it was removed (because of the revision of other 
constraints), we would just have to explore the values in Dj that are “after” the support 
since its “predecessors” have already been checked before. 

Assume without loss of generality that each domain Di is associated with a total 
ordering <d. The function succ(a, Dj), where Dj denotes the current domain of xj during 
the procedure of arc consistency enforcing, returns the first value in Dj that is after a in 
accordance with <d, or NIL, if no such an element exists. We define NIL as a value not 
belonging to any domain but preceding any value in any domain. 

As a simple example, let the constraint cij be xi = xj, with Di = Dj =[1..11]. The 
removal of value 11 from Dj (say, after the revision of some arc leaving xj) leads to a 
revision of (xi, xj). REVISE-3 will look for a support for every value in Di , for a total cost 
of 1 + 2 + … + 9 + 10 + 10 = 65 constraint checks, whereas only (xi, 11) had lost support. 
The REVISE2001/3.1 procedure listed below, makes sure that for each a ∈  [1..10], 
Last((xi, a), xj) still belongs to Dj, and finds that Last((xi, 11), xj) has been removed. 
Looking for a new support for 11 does not need any constraint check since Dj does not 
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contain any value greater than Last((xi, 11), xj), which was equal to 11. It saves 65 
constraint checks compared to AC-3. 

AC2001/3.1 is the main algorithm AC-3 augmented with the initialization of Last((xi, 
a), xj) to be NIL for any constraint cij and any value a ∈  Di. The corresponding revision 
procedure, REVISE2001/3.1 is listed below: 
 

 

Procedure REVISE2001/3.1(xi, xj) 
 begin 

   DELETE  false 
   for each a ∈ Dj do 
      b  Last((xi, a), xj) 
      if b ∉ Dj then 
         b  succ(b, Dj) 
         while (b ≠  NILL) and (¬cij(a, b)) do 

            b  succ(b, Dj) 
         if b ≠  NILL then 
            Last((xi, a), xj)  b 

         else 

            delete a from Di 

            DELETE  true 
   return DELETE 
 end 

 
 

3.2 GAC2001/3.1 for Non-binary Constraints 

 
AC2001/3.1 can be extended to GAC2001/3.1 to deal with non-binary constraints. 

The definition of arc consistency for non binary constraints is a direct extension of the 
binary one [Mac77a]. Let us denote by var(cj) = (xj1, …, xjq ) the sequence of variables 

involved in a constraint cj, by rel(cj) the set of tuples allowed by cj, and by ( )jcvar
| α=ixD  the set 

of the tuples τ in 
qjj DD ×× ...

1
 with τ[xi] = α (where i ∈  {j1, …, jq}). 

A tuple τ in ( )jcvar
| α=ixD  ∩  rel(cj) is called a support for (xi, α) on cj. The constraint cj is 

arc consistent (also called generalized arc consistent, or GAC) iff for any variable xi in 
var(cj), every value α ∈  Di has a support on cj. Tuples in a constraint cj are totally 
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ordered with respect to the lexicographic ordering obtained by combining the ordering <d 
of each domain with the ordering of the sequence var(cj) (or with respect to any total 
order used when searching for support). Once this ordering is defined, a call to 
REVISE2001/3.1 (xi, cj) checks for each α ∈  Di whether Last((xi, a), cj), which is the 

smallest support found previously for (xi, a), still belongs to ( )jcvarD . If not, it looks for a 

new support for α on cj. If such a support τ exists, it is stored as Last((xi, a), cj), otherwise 

α is removed from Di. The function ( )( )j

i

c
xDsucc var

|, ατ =  returns the smallest tuple in ( )jcvar
| α=ixD  

greater than τ. 
 
1. Algorithm GAC2001/3.1(x, c) 

2.    begin 

3.       Q  {(xi, cj)| cj ∈ C, xi ∈ var(cj)} 
4.       while Q not empty do 

5.          select and delete any pair (xi, cj) from Q 

6.          if REVISE2001/3.1 (xi, cj) then 

7.             Q  Q∪ {(xk, cm)|cm∈C,xi,xk∈var(cm),m≠ j, i≠ k} 
8.    End 

 
 
Procedure REVISE2001/3.1(xi, cj) 
   begin 

   DELETE  false 
   for each α ∈ Di do 
      τ  Last((xi, a), cj) 

      if ∃k/τ[
kj

x ] ∉ 
kj

D  then 

         τ  
( )( )j

i

c
xDsucc var

|, ατ =  

         while (τ ≠  NIL) and (¬cj(τ)) do 

            τ  
( )( )j

i

c
xDsucc var

|, ατ =  

         if τ ≠  NIL then 
            Last((xi, a), cj)  τ 
         else 

            delete α from Di  

            DELETE  true 
   return DELETE 
end 
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3.3 Specialized features for stochastic CSP 

 
The idea of Arc Consistency can also be applied to SCSPs as a pre-processing step, 

before we start search. In that way we can reduce the size of the search tree and in some 
cases we can discover inconsistent problems. 

The AC2001/3.1 (for binary constraints) and GAC2001/3.1 (for non-binary 
constraints) algorithms presented above, can directly be used for SCSPs. But, as they 
have been designed for standard CSPs, they do not exploit the special characteristics of 
SCSPs.  Thus, their direct use is inefficient. 

In the next paragraphs we extent the AC2001/3.1 and GAC2001/3.1 algorithms with 
specialized features, so that SCSPs can be handled efficiently. 
 

3.3.1 AC2001/3.1 for Stochastic CSPs 

 
To improve the efficiency of AC2001/3.1 on SCSPs we start from the following 

observation. Whenever a value α ∈  D(xi) of a stochastic variable xi ∈  S is deleted 
(because it has no support in some other variable) then the maximum threshold θmax that 
can be obtained is reduced. To compute the reduced threshold θmax we can add the 
probabilities of the remaining values of variable xi, sum(P(xi)), do the same for all other 
stochastic variables, and then multiply all sums for all stochastic variables. If θmax falls 
under the desired threshold θ then we can infer that the problem is inconsistent. That is, 
the required satisfaction cannot be achieved. 

As an example, let us consider a small instance of a SCSP. Let us assume that x is a 
decision variable and y, z are stochastic variables. We suppose that all variables have the 
same domain D(0, 1, 2), θ = 0.7 and that the probability distribution for variables y, z are 
as follows: P(y = 0) = 0.5, P(y = 1) = 0.3, P(y = 2) = 0.2, P(z = 0) = 0.2, P(z = 1) = 0.6 
and P(z = 2) = 0.2. We also define two constraints: C1(x, y) = {(0, 0), (0, 1), (1, 1), (2, 1)} 
and C2(x, z) = {(0, 1), (0, 2), (1, 1), (2, 2)}. By checking C1, the value y = 2 has no 
support and an AC algorithm will erase that value. The maximum threshold that can now 
be obtained is computed as: θmax = (0.5 + 0.3)× (0.2 + 0.6 + 0.2) = 0.8. Because θmax > θ, 
we can continue by checking C2. The value z = 0 has no support and an AC algorithm 
will erase that value. The new maximum threshold that can be obtained is computed as: 
θmax = (0.5 + 0.3)× (0.6 + 0.2) = 0.64. Because θmax < θ, we can infer that the problem is 
inconsistent. 
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3.3.2 GAC2001/3.1 for Stochastic CSPs 

 
Arc consistency for SCSPs be generalized to deal with non-binary constraints. 

Whenever a value α ∈  D(xi) of a stochastic variable xi ∈  S is deleted (because it has no 
support tulpeτ  in some other constraint then the maximum threshold θmax that can be 
obtained is reduced. To compute the reduced threshold θmax we can add the probabilities 
of the remaining values of variable xi, sum(P(xi)), do the same for all other stochastic 
variables, and then multiply all sums for all stochastic variables. If θmax falls under the 
threshold θ then we can infer that the problem is inconsistent. 

 The extended Stochastic GAC2001/3.1 (SGAC2001/3.1) and the corresponding 
procedure (SREVISE2001/3.1) for stochastic Generalized Arc Consistency are listed 
below: 

 
 Algorithm SAC2001/3.1(x, c) 

    begin 

       Q  {(xi, xj)| cij∈C or cji∈C, i≠ j} 
       while Q not empty do 

          select and delete any pair (xi, cj) from Q 

          if SREVISE2001/3.1(xi, cj) = 1 then 

             Q  Q∪ {(xk, cm)|cm∈C,xi,xk∈var(cm),m≠ j, i≠ k} 
          else if SREVISE2001/3.1(xi, cj) = -1 then 

             problem inconsistent; Exit; 

    End 

  
 
 Procedure SREVISE2001/3.1(xi, cj) 

    Begin 

    DELETE  false 

    for each α ∈ Di do 
       τ  Last((xi, a), cj) 

       if ∃k/τ[
kj

x ] ∉ 
kj

D  then 

          τ  
( )( )j

i

c
xDsucc var

|, ατ =  

          while (τ ≠  NIL) and (¬cj(τ)) do 

             τ  
( )( )j

i

c
xDsucc var

|, ατ =  

          if τ ≠  NIL then 
             Last((xi, a), cj)  τ 
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          Else 

             delete α from Di  

             if xi ∈ S then 
                θmax =  sum(P(xi)) 
                for each x ∈ S do  

   θmax(x) = sum(P(x))    
                   θmax  ×=  θmax(x) 
                End 

                if θmax < θ then 
                   ACTION  -1 

                Else 

                   ACTION  1 

    return ACTION 

  End 

 
Note that the described method of determining whether a problem is satisfiable when 

applying (G)AC is meaningful as a preprocessing technique only when we try to 
determine if the satisfaction of the problem is at least as much as a given threshold θ. In 
the case where we seek the maximum satisfaction, the condition described above will 
never be met (i.e. θmax will never fall below θl = 0 unless there is domain wipeout of a 
stochastic variable). This means that stochastic (G)AC will work just like standard 
(G)AC. However, if (G)AC is maintained during search then the above algorithm can be 
used to prune the search space in both cases. 

 

3.3.3 A Pruning Rule for Stochastic GAC 

 
In the previous subsections we showed how (G)AC can exploit probabilities to 

determine, in some cases, that the problem cannot be satisfied. A natural question that 
arises is whether AC and GAC can actually perform value pruning in a SCSP, apart from 
the standard case where a value has no support in some constraint. We will now describe 
a pruning rule that can be used by an AC or GAC algorithm to prune values from certain 
decision variables. First we will explain how the rule can be applied in binary problems 
and then we will generalize to the non-binary case. For simplicity reasons, we will 
describe how the pruning rule can be used when preprocessing a SCSP. The application 
of the rule during search is feasible, but more involved, and is left as future work. 
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As we will see through this section, this pruning rule can be applied only in problems 
in which the first stage consists of decision variables (i.e. one or more decision variables 
are in front of any stochastic variable in the sequence of variables). Note that this 
restriction concerns only the application of the rule as a preprocessing technique. 
 
Example 3.1 

 
 We assume that x is a decision variable and y, z are stochastic variables. We suppose 

that all variables have the same domain D(0, 1, 2), θ = 0.7 and that the probability 
distribution for variables y, z are as follows: P(y = 0) = 0.2, P(y = 1) = 0.1, P(y = 2) = 
0.7, P(z = 0) = 0.6, P(z = 1) = 0.3 and P(z = 2) = 0.1. We also define two constraints: 
C1(x, y): Disallowed tuples{(0, 0), (0, 1)} and C2(x, z): Disallowed tuple(0, 1). 

Whenever we try to find a support for value 0 of the decision variable x, the 
SGAC2001/3.1 algorithm will find a support value 2 for the stochastic variable y and the 
support values {0, 2} for the stochastic variable z. Since value {0} of the decision 
variable x has support in both other variables, it will not be erased by the AC algorithm. 
But if we try to solve this problem using a search algorithm, we will find out that the 
assignment x = 0, throws the threshold under θ (θmax = 0.7 ×  0.7 = 0.49 < θ). Therefore, 
the assignment x = 0 cannot participate in a solution and should not be considered. 

 
To increase the pruning efficiency, an AC algorithm could check if the supports of 

each value of x in variables y, z offer enough satisfaction to achieve the desired threshold 
θ. If not, as is the case with value 0 in the example 3.1, then the corresponding value can 
safely be deleted from the domain of x. Note that this would not be the case is x belonged 
to a later stage of the problem (i.e. it was after some stochastic variables). In the example, 
when AC looks for supports for value 0 of x, instead of only locating supports in y and z, 
it can also check if the maximum satisfaction θmax that the supports of 0 can offer is less 
that the desired threshold. In this case: θmax = 0.7 ×  (0.6 + 0.1) = 0.47 < θ. Therefore 
value 0 of x will be deleted. 

More generally, a pruning rule that can be checked every time we are looking for 
supports for a value α of a decision variable x (when this variable is present in the first 
stage of the problem) can be expressed as:  “For all stochastic variables add the 
probabilities of the values that are supported by x=a and then multiply all sums. If the 
result is lower than the threshold then remove value α from the domain of variable x”. 
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3.3.4 Chance Constraints for Stochastic SCSPs 

 
As already defined, a stochastic constraint satisfaction problem is a 6-tuple (V, S, D, 

P, C, θ) where V is a list of variables, S is the subset of V which are stochastic variables, 
D is a mapping from V to domains. C is a set of constraints where a constraint c ∈  C on 
variables xi, …, xj specifies a subset of the Cartesian product D(xi) ×  … ×  D(xj) 
indicating mutually-compatible variable assignment. 

In [Walsh03], an extension of the stochastic CSP is presented, where the definition of 
chance constraints is introduced. Any constraint of C that involves at least one variable in 
S is called a chance constraint, h. Every chance constraint h has an associated probability 
threshold θh in the interval [0, 1] indicating the minimum probability with which the 
chance constraint h must be satisfied. That is, the minimum fraction of worlds where the 
constraint is satisfied. Constraints that involve only decision variables, or have θh = 1 are 
hard constraints, meaning that must always be satisfied. 

Note that [Walsh02] only allowed for one (global) chance constraint so the definition 
of stochastic constraint programming that allows for multiple chance constraints is 
strictly more general. 

Let us denote by con(xi) = {ci1, …, ciq} the set of constraints in which the stochastic 
variable xi participates and by θh(ci) the threshold for the chance constraint ci. Then every 
time a value α ∈ D(xi) is deleted, we must check if the maximum threshold that can be 
obtained in all constraints that belong to con(xi) is lower than θh(ci). This could be done 
by adding the probabilities of the values in all stochastic variables ∈  ci and then 
multiplying all sums. 

The extension of SREVISE2001/3.1 to support chance constraints is listed below: 
 

 
 Procedure SREVISE2001/3.1(xi, cj) 

    Begin 

    DELETE  false 

    for each α ∈ Di do 
       τ  Last((xi, a), cj) 

       if ∃k/τ[
kj

x ] ∉ 
kj

D  then 

          τ  
( )( )j

i

c
xDsucc var

|, ατ =  

          while (τ ≠  NIL) and (¬cj(τ)) do 

             τ  
( )( )j

i

c
xDsucc var

|, ατ =  
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          if τ ≠  NIL then 
             Last((xi, a), cj)  τ 

          Else 

             delete α from Di  

             if xi ∈ S then 
                θmax(xi) = sum(P(xi)) 

                for each ci ∈ con(xi) do     
                   for each x ∈ ci do     

θmax(x) = sum(P(x)) 

                      θhmax(ci) ×= θmax(x) 
                if θhmax(ci) < θh(ci) then 
                   ACTION  -1 

                for each x ∈ S do     
                   θmax ×= θmax(x) 
                if θmax < θ then 

                   ACTION  -1 

                Else 

                   ACTION  1 

             End 

    return ACTION 

  End 

 
During search the chance constraints can be handled as follows. Every time a value is 

deleted from a stochastic variable, we first detect all constraints in which this variable 
participates. Then we check in any constraint that is a chance constraint if the remaining 
probabilities are enough to achieve the threshold of the chance constraint. This could be 
done by adding the probabilities of the values in all stochastic variables that participate 
on the current constraint and then multiplying all sums. 
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Chapter 4 
 

4 Search Algorithms 

 
In this chapter we introduce new search algorithms for solving stochastic constraint 

satisfaction problems. We first identify and correct a flaw in the forward checking (FC) 
algorithm given in [Walsh02]. We also describe an improved version of FC which 
exploits probabilities in a more “global” way and in this way results in stronger pruning. 
Then we introduce a Maintaining Arc Consistency (MAC) algorithm for SCSPs.  

Before getting into details on the new search algorithms we recall and analyze the 
behavior of the FC algorithm given in [Walsh02].  
 

4.1 Walsh’ s FC Algorithm 

 
We recall here again the FC algorithm presented in [Walsh02] in order to examine 

closely the way the algorithm operates: 
 

Procedure FC(i, θl, θh) 
   if i > n then return 1 

   θ := 0 
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   for each dj ∈ D(xi) 
      if prune(i, j) = 0 then 

         if check(xi  dj, θl) then 
            if xi ∈ S then 
               p := prob(xi  dj) 

               qi := qi - p 

               θ := θ + p × FC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
θ-θ,

p
q- θ-θ,1 hli  

               restore(i) 

               if θ + qi < θl then return θ 
               if θ > θh then return θ  
            else 
               θ := max(θ, FC(i+1, max(θ, θl), θh)) 

               restore(i) 
               if θ > θh then return θ  
         else restore(i) 
   return θ 

 

The check and restore procedures are given bellow.  
 
 Procedure check(xi  dj, θl) 

1.    for k := i + 1 to n 

2.       dwo := true 

3.       for dl ∈ D(xk) 
4.          if prune(k, l) = 0 then 

5.             if inconsistent(xi  dj, xk  dl) then 

6.                prune(k, l) := i 

7.                if xk ∈ S then 
8.                   qk := qk – prob(xk  dl) 

9.                   if qk < θl then return false 

10.             else dwo := false 

11.       if dwo := false then return false 

12.    return true 

 

Procedure restore(i) 
   for j = i + 1 to n 
      for dk ∈ D(xj) 
         if prune(j, k) = i then 
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            prune(j, k) = 0 

         if xj ∈ S then qj := qj + prob(xj  dk)  
 

We will focus our attention on the check procedure, which is responsible for making 
forward checks and deciding whether the current variable assignment should be accepted 
or rejected. Checking forwards fails if a stochastic or decision variable has a domain 
wipeout (dwo), or if a stochastic variable has so many values removed that we cannot 
hope to satisfy the threshold. This last condition is shown in lines 7-9 of check procedure. 
If the variable we want to check is stochastic (xk) and its value dl is inconsistent, we 
reduce qk by prob(xk  dl), the probability that xk takes the value dl. If forward 
checking ever reduces qk to less than θl, we backtrack as it is impossible to set xk and 
satisfy the constraints adequately (line 9 in check procedure). Below we show that this 
process may be problematic in some cases. 

 

4.2 Improved Forward Checking 

 
If we examine the Forward Checking algorithm described above in more detail, we 

will see that it makes some weak assumptions that may even result in returning erroneous 
results. We will try to reveal the weaknesses of this FC algorithm in the next paragraphs, 
through a set of examples.  

As mentioned, when we are trying to solve a SCSP, there are two different things that 
we may be looking for. We are looking either for the optimal satisfaction or we are trying 
to determine if the optimal satisfaction is at least θ (where θ is the threshold). According 
to [Walsh02] the optimal satisfaction can be achieved by setting θl = 0 and θh = 1. To 
determine if the optimal satisfaction is at least θ we can set θl = θh = θ. 

In the following two examples we will see that there are some cases where the 
optimal satisfaction in the FC algorithm (presented by [Walsh02]) cannot be achieved 
due to a flaw in the check procedure of the algorithm and specifically due to the condition 
checked in lines 7-9. 

 
Example 4.1 
 
Suppose we have a SCSP with two stochastic variables S1 and S2. The domains of 

these variables are {0, 1} and the desired threshold is θl = θh = 0.92. The probabilities of 
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the stochastic variables are shown in Figure 4.1. We also have a constraint involving 
variables S1 and S2 with one disallowed tuple: 

Constraint (S1,S2) – Disallowed tuple (1,0) 
 
A graphical representation of the problem’s search tree is shown in Figure 4.1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
During search the algorithm first instantiates variable S1 to 0 and forward checks this 

assignment. Since it does not violate any constraint and forward checking does not 
remove any value from variable S2, the algorithm continues by setting S2=0 and then 
S2=1. After backtracking to S1, the current satisfaction θ for variable S1 will be 0.9. This 
satisfaction is less that θh (0.9 ×  0.8 = 0.72 < 0.92), so we will continue by setting S1=1.  

When the value 1 is assigned to variable S1, the value 0 will be rejected from the 
domain of variable S2 because it violates the constraint. Procedure check will now 
determine if the remaining values in the domain of S2 are enough to achieve the 
threshold. Let’s examine this in more detail. 

In line 8 (qk := qk – prob(xk  dl), q2 will be calculated as follows: 
q2 = 1 – prob(S2  0) = 1 – 0.8 = 0.2 

In line 9 (if qk < θl then return false) we will have: 
q2 < θl  0.2 < 0.92, which is true 

Thus, the procedure will return false and the algorithm will be terminated with 
returned optimal satisfaction 0.9. However, this value is not correct. It is easy to 
determine from Figure 4.1, that the optimal satisfaction for this problem is 0.92. 

 

 
Figure 4.1 
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Example 4.2 
 
We have 3 variables D1, S1, S2, where D1 is a decision variable and S1, S2 are 

stochastic. The domains of these variables are {0, 1}. The probabilities of the stochastic 
variables are shown in Figure 4.2.We also have 2 constraints in this problem: 

Constraint (D1,S1) – Disallowed tuple (0,1) 
Constraint (S1,S2) – Disallowed tuple (1,0) 

 
In this problem we are looking for the optimal satisfaction, which means that θl = 0 

and θh = 1. A graphical representation of this problem’s search tree is shown in Figure 
4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FC algorithm will first instantiate D1 to 0 and forward check this assignment. As 

a result, value 1 of variable S1 will be deleted and the subtree having this value as root 
will be pruned. Then the algorithm will explore the non-pruned subtree below D1=0 and 
eventually will backtrack to D1. At this point θ will be 0.5 (i.e the satisfaction of the 
explored subtree). Now when FC moves forward to instantiate S1, θl will be set to 
max(θl, θ) = max(0.5, 0) = 0.5. The subtree below S1=0, weighted by prob(S1=0), gives 
0.5 satisfaction. When assigning 1 to D1, check will return false. This is because value 0 

 
Figure 4.2 
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Figure 4.3

of S2 will be removed and the remaining probability in the domain of S2 will be 0.4 < θl. 
Therefore, FC will backtrack and terminate, incorrectly returning 0.5 as the maximum 
satisfaction. Clearly, the maximum satisfaction, which is achieved by this policy, is 0.7. 

 
The last example demonstrates that the pruning achieved by Walsh’s FC is weak. 
 
Example 4.3 
 
Let’s consider a SCSP with 3 variables D1, S1, S2, where D1 is a decision variable 

and S1, S2 are stochastic. The domains of these variables are {0, 1} and the requested 
threshold is 0.7. The probabilities of the stochastic variables are shown in Figure 4.3.We 
also have 2 constraints in this problem: 

Constraint (D1,S1) – Disallowed tuple (0,0) 
Constraint (D1,S2) – Disallowed tuple (0,1) 

 
A graphical representation of this problem’s search tree is shown in Figure 4.3. 

 

 

When value 0 is assigned to variable D1, the FC algorithm presented in [Walsh02] 
will first examine variable S1 and it will remove value 0 from its domain since it violates 
the constraint between D1 and S1. Then the algorithm will check if the remaining value 1 
is adequate to achieve the threshold. This check will return true and the algorithm will 
continue by forward checking the assignment D1=0 against the values of variable S2. In a 
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similar way as above, value 1 will be removed from the domain of S2 but since the 
remaining value 0 is adequate to achieve the threshold, FC will continue. The algorithm 
will now assign value 1 to variable S1 and then value 0 to variable S2. After this last 
assignment the algorithm will discover that the threshold cannot be achieved (θ = 0.7 ×  
0.7 = 0.49) and it will backtrack. 

An improved version of the above FC algorithm could discover early that the 
assignment of value 0 to variable D1 cannot achieve the desired threshold without 
requiring the instantiation of variables S1 and S2. This can be done while forward 
checking the assignment of 0 to variable D1 against the future variables. To be precise, 
this can be easily done by multiplying the probabilities of the remaining values of the 
future stochastic variables S1, S2 (after forward checking) and comparing the result with 
threshold.  

0.7 ×  0.7 = 0.49 < 0.7 
 

By summarizing the results of the above examples, we can see in example 3 that the 
algorithm visits redundant nodes. Moreover, in examples 1 and 2 the algorithm returns a 
wrong value for the optimal satisfaction. In example 1 this flaw happens when the current 
variable is stochastic.  

The main reason for these failures is the condition in line 9 of the check procedure: 
if qk < θl then return false 

The algorithm considers only the sum qk of the remaining probabilities of each future 
stochastic variable on its own. This value is compared with θl. This restricts the algorithm 
to a “local” view of the future problem. 

An improved version of the above check procedure will not check the qk quantity with 
θl, but it will compare the θl with following quantity: 

ζκ ×  prob(xk  dl) +  θ  +  qk  (if the current variable is stochastic) 
or 

ζκ (if the current variable is decision) 
where: 
ζκ : is the product of probabilities of the remaining values of future stochastic variables 
prob(xk  dl): is the probability of current value of variable xk 
θ:  is the sum of satisfactions of previous values of the current variable, 
qk: is the sum of  the probabilities of the rest values in the current stochastic variable. 
 

This quantity considers value removals from multiple future stochastic variables 
together. It describes the maximum possible satisfaction of an assignment of a value to 
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the current variable. If this quantity is less than θl then the check procedure will return 
false. This is because it is possible that enough values are removed from a number of 
stochastic variables so that the maximum possible satisfaction of the current assignment 
cannot exceed the previously computed satisfaction at the current variable. 

The pseudocode of the above described improved check procedure is given below:  
 

 Procedure improvedCheck(xi  dj, θ, θl) 

1.    for k := i + 1 to n 

2.       dwo := true 

3.       for dl ∈ D(xk) 
4.          if prune(k, l) = 0 then 

5.             if inconsistent(xi  dj, xk  dl) then 

6.                prune(k, l) := i 

7.                ζi := multiplication[prob(future xi ∈ S)] 
8.                if xk ∈ S then 
9.                   qk := qk – prob(xk  dl) 

10.                   if xi ∈ S then 
11.                      if (ζi ×  prob(xk  dl) +  θ  +  qk ) < θl then  
12.                         return false 

13.                   else  // if variable is decision 

14.                      if ζi  < θl then 
15.                         return false 

16.             else dwo := false 

17.       if dwo := false return false 

18.    return true 

 
By substituting the check procedure presented in [Walsh02] with the improvedCheck 

procedure presented here, we generate an improved FC algorithm which returns the 
correct optimal satisfaction in any case. 
 
 
Value Ordering 
 

By default, the FC algorithm presented above, simply selects the next unassigned 
value from each variable, in the order given by the list of values for every variable. This 
static value ordering seldom results in the most efficient search, in cases we want to 
determine if the optimal satisfaction is at least θ. 
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The order of values of the stochastic variables might increase the efficiency of the FC 
algorithm. This is because every value of a stochastic variable participates in the problem 
with a different probability. And if we examine first the most probable values of each 
stochastic variable, it might be faster to reach the threshold θ, or to figure out that 
threshold θ cannot be reached. 

Thus, a simple heuristic that can be used in cases where we want to determine if the 
optimal satisfaction is at least θ, is the descending order of values of the stochastic 
variables, according to their probability. 

On the other hand, the values of decision variables can be ordered according to any 
value ordering heuristic used in standard CSPs modified to suit the SCSP case. That is, 
the values that are most likely to lead to a solution (optimal satisfaction) should be tried 
first. This can be determined by taking into account the number of supports that each 
value has in the future variables and the probabilities of the supports of future stochastic 
variables. 

A detailed investigation of value ordering heuristics for stochastic and decision 
variables is left as future work. 
 
 

4.3 Maintaining Arc Consistency algorithm 

 
The MAC algorithm presented in Chapter 2 works for classic CSPs. Having defined 

the AC and FC algorithms for Stochastic CSPs it is easy to extend the classic MAC to 
SCSPs. The new algorithm can be derived if we substitute the improvedCheck procedure 
of the FC algorithm with a call to the GAC algorithm for Stochastic CSPs presented in 
Chapter 3. Note that this, provide us with an algorithm that can operate in SCSPs with 
constraints of any arity. 

The MAC algorithm may be more efficient than FC because it can determine 
inconsistencies in future variables earlier than FC. As an example, let’s consider the 
following SCSP (Figure 4.4): 
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When the MAC algorithm sets D1=0 and tries to check the arc consistency of future 

variables it will see that in variable S1 we have a domain wipeout. The FC algorithm will 
understand this, after setting S1=0. 

In the above example the difference is due to classic propagation as in standard CSPs. 
As we will see in the next example there are cases where the probabilities of the 
stochastic variables could play an important role: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this example (Figure 4.5), when the MAC algorithm sets D1=0 and tries to check 

the arc consistency of future variables it will see that the remaining values in variable S1 

 
Figure 4.4 

 
Figure 4.5 
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are not enough to achieve the threshold (value S1=1 will be rejected as inconsistent with 
variable D2). The FC algorithm will understand this, after setting S1=1. 

From the above examples it is clear that in some cases the MAC algorithm can visit 
fewer nodes than FC, in the search tree. 
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Chapter 5 
 

5 Experiments 
 
 

We implemented GAC, FC and Improved FC in Java and ran them on a range of 
randomly generated problems. In this chapter we summarize the results of our 
experiments. Note that the experiments presented are preliminary. Further experiments 
with random and, mainly, realistic problems are required to better evaluate the 
performance and scalability of the algorithms.  

5.1 Problems description 

 
The experiments we ran in this thesis were set up as follows. The problems have 10 

variables, each one with 5 values. The variables alternate from decision to stochastic one 
by one. 100 random problems are generated at each value of p (the percentage of 
constraints present in a problem out of the n(n-1)/2=45 possible constraints) and q (the 
percentage of allowed tuples per constraint in a problem out of the d2=25 possible tuples) 
from 0 to 1 in steps of 0.1. All the constraints in these problems were binary. 

First we ran on these randomly generated problems Walsh’s FC algorithm to get an 
indication of how often the flaw in the algorithm affects the results. Then we ran the 
improved FC algorithm and compared it with improved FC that uses AC as a 
preprocessing step. 
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In these problems we measured the search cost (in terms of visited nodes in the 
explored search tree) and the cpu time in order to find the optimal satisfaction. The search 
cost and the cpu time for the decision problem of determining if a policy exists to meet a 
given fixed threshold θ displays a similar (but slightly lower) complexity peak. 
 

5.2 Search Cost plots 

 
In the diagrams presented in this section, we have on x-axis the percentage of allowed 

tuples per constraint q and on the y-axis the nodes visited by the algorithms. 
We present 9 plots each one for every value of p from 0.1 to 0.9.That is, the diagrams 

correspond to problems with increasing density. With the continuous line we represent 
the improved FC algorithm. With the dashed line we represent the AC plus FC algorithm. 
Since the curves in all plots are very close, we present also a zoom plot. 
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p=0.2 p=0.2 (zoom) 
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p=0.5 p=0.5 (zoom) 
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p=0.8 p=0.8 (zoom) 
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5.3 Runtime plots 

 
In the diagrams presented in this section, we have on x-axis the percentage of allowed 

tuples per constraint q and on the y-axis the CPU time in seconds needed for the 
execution of the FC algorithm in any case. 

We also present 9 plots each one for every value of p from 0.1 to 0.9. With the 
continuous line we represent the improved FC algorithm. With the dashed line we 
represent the AC plus FC algorithm. Since the curves in any plot are very close, we 
present also a zoom plot. 
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p=0.7 p=0.7 (zoom) 
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p=0.8 p=0.8 (zoom) 
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5.4 Experiments Evaluation 

 
In many parameter settings of the above experiments, Walsh’s FC algorithm has 

compute wrong value for the optimal satifiability. In some cases this error is over 50% of 
the instances. 

As can be derived from the above plots, when the percentage q of the allowed tuples 
per constraint is small, then the problems are easy. As q increases, problems become 
much harder. This can be explained as follows.  When q is small, which means that there 
are few allowed tuples, then the problems are over-constrained and cannot be satisfied. 
That is, there is no policy that satisfies all constraints. This is verified quickly by FC or 
even by AC preprocessing. As q increases, the number of policies that satisfy the 
constraints is also increased. Thus, to find the optimal satisfaction we need to search 
many more nodes in the search tree. As we can see from the plots, there is a point where 
we notice a sharp transition in the difficulty of the problems. This transition is sharper for 
denser problems (i.e. ones with high p). This is a typical phenomenon in many randomly 
generated combinatorial problems, known as a phase transition. Further experiments with 
larger problems are required to better understand the phase transition behavior of SCSPs. 

In any case as we can see from the zoom plots, the use of Arc Consistency as a 
preprocessing step results in a small downfall of the search cost and runtime. We expect 
the benefits gained by the application of AC before or during search to be much higher as 
the size of the problems increases. 
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Chapter 6 
 

6 Conclusions 
 
 

In this thesis we studied the Stochastic Constraint Satisfaction Problem, an extension 
of the Constraint Satisfaction Problem which includes both decision variables (which we 
can set) and stochastic variables (which follow some probability distribution). The 
framework is designed to take advantage of the best features of traditional constraint 
programming, stochastic integer programming, and stochastic satisfiability. It can be used 
to model a wide variety of decision problems involving uncertainty and probability. 

Our work has followed the semantics for stochastic constraint programs based upon 
policies. These determine how decision variables are set depending on earlier decision 
and stochastic variables. We have studied the algorithms presented in [Walsh02] and 
have shown that the FC algorithm suffers from a flaw in the way forward checks are 
made which can result in erroneous answers. We have corrected the flaw and proposed an 
improved version of the FC algorithm that achieves stronger pruning. 

Moreover, we have described GAC and MAC algorithms for Stochastic CSPs that 
exploit specialized pruning rules to refute branches of the search tree and thus save search 
effort. In this way our work generalizes the work of Walsh where only binary constraints 
were considered. 

As future work we intend first to complete the work presented here by implementing 
and testing the MAC algorithm and also incorporating in MAC the extension for chance 



 58

constraints. Then we would like to explore ways to increase the efficiency of 
backtracking-based algorithms by defining and implementing features such as intelligent 
backjumping, pure literal detection, and higher consistency enforcement. Also, the 
implementation of efficient propagation procedures for specialized constraints should be 
considered. Finally, we would like to explore alternative ways to solve stochastic CSPs 
by borrowing ideas from the fields of stochastic programming, on-line optimization, and 
local search. 
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