
Algorithms for Stochastic CSPs

Thanasis Balafoutis and Kostas Stergiou

Department of Information and Communication Systems Engineering
University of the Aegean, Samos, Greece

Abstract. The Stochastic CSP (SCSP) is a framework recently intro-
duced by Walsh to capture combinatorial decision problems that involve
uncertainty and probabilities. The SCSP extends the classical CSP by
including both decision variables, that an agent can set, and stochastic
variables that follow a probability distribution and can model uncer-
tain events beyond the agent’s control. So far, two approaches to solving
SCSPs have been proposed; backtracking-based procedures that extend
standard methods from CSPs, and scenario-based methods that solve
SCSPs by reducing them to a sequence of CSPs. In this paper we further
investigate the former approach. We first identify and correct a flaw in
the forward checking (FC) procedure proposed by Walsh. We also extend
FC to better take advantage of probabilities and thus achieve stronger
pruning. Then we define arc consistency for SCSPs and introduce an arc
consistency algorithm that can handle constraints of any arity.

1 Introduction

Representation and reasoning with uncertainty is an important issue in con-
straint programming since uncertainty is inherent in many real combinatorial
problems. To model such problems, many extensions of the classical CSP have
been proposed (see [9] for a detailed review). The Stochastic CSP (SCSP) is a
framework that can be used to model combinatorial decision problems involv-
ing uncertainty and probabilities recently introduced by Walsh [10]. The SCSP
extends the classical CSP by including both decision variables, that an agent
can set, and stochastic variables that follow a probability distribution and can
model uncertain events beyond the agent’s control. The SCSP framework is in-
spired by the stochastic satisfiability problem [6] and combines some of the best
features of traditional constraint satisfaction, stochastic integer programming,
and stochastic satisfiability.

The expressional power of the SCSP can help us model situations where there
are probabilistic estimations about various uncertain actions and events, such
as stock market prices, user preferences, product demands, weather conditions,
etc. For example, in industrial planning and scheduling, we need to cope with
uncertainty in future product demands. As a second example, interactive config-
uration requires us to anticipate variability in the users’ preferences. As a final
example, when investing in the stock market, we must deal with uncertainty in
the future price of stocks.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 44–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algorithms for Stochastic CSPs 45

SCSPs have recently been introduced and only a few solution methods have
been proposed. In the initial paper, Walsh described a chronological backtracking
and a forward checking procedure for binary problems [10]. These are extensions
of the corresponding algorithms for CSPs that explore the space of policies in a
SCSP. Alternatively, scenario-based methods, which solve a SCSP by reducing
it to a sequence of CSPs, were introduced in [7]. This approach carries certain
advantages compared to algorithms that operate on the space of policies. Most
significantly, it can exploit existing advanced CSP solvers, without requiring
the implementation of (potentially complicated) specialized search and propaga-
tion techniques. As a consequence, this approach is not limited to binary prob-
lems. However, the number of scenarios in a SCSP grows exponentially with
the number of stages in the problem. Therefore, the scenario-based approach
may not be applicable in problems with many stochastic variables and many
stages.

In this paper we develop algorithms for SCSPs following the initially proposed
approach based on the exploration of the policy space. We first identify and cor-
rect a flaw in the forward checking (FC) procedure proposed by Walsh. We also
extend FC to take better advantage of probabilities and thus achieve stronger
pruning. Then we define arc consistency (AC) for SCSPs and introduce an AC
algorithm that can handle constraints of any arity. This allows us to implement
a MAC algorithm that can operate on non-binary problems. Finally, we present
some preliminary experimental results.

2 Stochastic Constraint Satisfaction

In this section we review the necessary definitions on SCSPs given in [10] and
[7]. A stochastic constraint satisfaction problem (SCSP) is a 6-tuple< X, S, D,
P, C, Θ > where X is a sequence of n variables, S is the subset of X which are
stochastic variables, D is a mapping from X to domains, P is a mapping from
S to probability distributions for the domains of the stochastic variables, C is a
set of e constraints over X , and Θ is a mapping from constraints to threshold
probabilities in the interval [0, 1]. Each constraint is defined by a subset of the
variables in X and an, extensionally or intensionally specified, relation giving the
allowed tuples of values for the variables in the constraint. A hard constraint,
which must be always satisfied, has an associated threshold 1, while a “chance
constraint” ci, which may only be satisfied in some of the possible worlds, is
associated with a threshold θi ∈ [0, 1]. This means that the constraint must be
satisfied in at least a fraction θi of the worlds.

For the purposes of this paper, we will follow [10] and assume that the problem
consists only of a single global chance constraint which is the conjunction of all
constraints in the problem. This global constraint must be satisfied in at least a
fraction θ of the possible worlds. We will also assume that the stochastic variables
are independent (as in [10]). This assumption limits the applicability of the SCSP
framework but it can be lifted, as in other frameworks for uncertainty handling,
such as fuzzy and possibilistic CSPs [4].

46 T. Balafoutis and K. Stergiou

We will sometimes denote decision variables by xdi and stochastic variables
by xsi. Accordingly, the sets of decision and stochastic variables in the problem
will be denoted by Xd and Xs respectively. The domain of a variable xi will be
denoted by D(xi), and the variables that participate in a constraint ci will be
denoted by var(ci). We assume that in each constraint ci the variables in var(ci)
are sorted according to their order in X .

The backtracking algorithms of [10] explore the space of policies in a SCSP. A
policy is a tree with nodes labelled with value assignments to variables, starting
with the values of the first variable in X labelling the children of the root, and
ending with the values of the last variable in X labelling the leaves. A variable
whose next variable in X is a decision one corresponds to a node with a single
child, while a variable whose next variable in X is a stochastic one corresponds
to a node that has one child for every possible value of the following stochastic
variable. Leaf nodes take value 1 if the assignment of values to variables along
the path to the root satisfies all the constraints and 0 otherwise. Each path
to a leaf node in a policy represents a different possible scenario (set of values
for the stochastic variables) and the values given to decision variables in this
scenario. Each scenario has an associated probability; if xsi is the i-th stochastic
variable in a path to the root, vi is the value given to xsi in this scenario, and
prob(xsi ← vi) is the probability that xsi = vi, then the probability of this
scenario is:

∏
i prob(xsi ← vi).

The satisfaction of a policy is the sum of the leaf values weighted by their
probabilities. A policy satisfies the constraints iff its satisfaction is at least θ. In
this case we say that the policy is satisfying. A SCSP is satisfiable iff it has a
satisfying policy. The optimal satisfaction of a SCSP is the maximum satisfaction
of all policies. Given a SCSP, two basic reasoning tasks are to determine if the
satisfaction is at least θ and to determine the maximum satisfaction.

The simplest possible SCSP is a one-stage SCSP in which all of the decision
variables are set before the stochastic variables. This models situations in which
we must act now, trying to plan our actions in such a way that the constraints
are satisfied (as much as possible) for whatever outcome of the later uncertain
events. Alternatively, we may demand that the stochastic variables are set before
the decision variables. A one stage SCSP is satisfiable iff there exist values for
the decision variables so that, given random values for the stochastic variables,
the constraints are satisfied in at least the given fraction of worlds. In a two
stage SCSP, there are two sets (blocks) of decision variables, Xd1 and Xd2, and
two sets of stochastic variables, Xs1 and Xs2. The aim is to find values for the
variables in Xd1, so that given random values for Xs1, we can find values for
Xd2, so that given random values for Xs2, the constraints are satisfied in at
least the given fraction of worlds. An m stage SCSP is defined in an analogous
way to one and two stage SCSPs.

SCSPs are closely related to quantified CSPs (QCSPs). A QCSP can be viewed
as a SCSP where existential and universal variables correspond to decision and
stochastic variables, respectively. In such a SCSP, all values of the stochastic
variables have equal probability and the satisfaction threshold is 1.

Algorithms for Stochastic CSPs 47

3 Forward Checking

Forward Checking for SCSPs was introduced in [10] as an extension of the cor-
responding algorithm for CSPs. We first review this algorithm and show that it
suffers from a flaw. We then show how this flaw can be corrected and how FC
can be enhanced to achieve stronger pruning.

Figure 1 depicts the FC procedure of [10]. FC instantiates the variables in the
order they appear in X . On meeting a decision variable, FC tries each value in
its domain in turn. The maximum value is returned to the previous recursive
call. On meeting a stochastic variable, FC tries each value in turn, and returns
the sum of all the answers to the subproblems weighted by the probabilities of
their occurrence. On instantiating a decision or stochastic variable, FC checks
forward and prunes values from the domains of future variables which break
constraints. If the instantiation of a decision or stochastic variable breaks a con-
straint, the algorithm returns 0. If all variables are instantiated without breaking
any constraint, FC returns 1.

Procedure FC(i, θl, θh) function check(xi ← vj , θl)
if i > n then return 1 for k := i + 1 to n
θ := 0 dwo := true
for each vj ∈ D(xi) for each vl ∈ D(xk)

if prune(i, j) = 0 then if prune(k, l) = 0 then
if check(xi ← vj , θl) then if inconsistent(xi ← vj , xk ← vl) then

if xi ∈ Xs then prune(k, l) := i
p := prob(xi ← vj) if xk ∈ Xs then
qi := qi − p qk := qk - prob(xk ← vl)
θ:=θ+p×FC(i+1,(θl-θ-qi)/p,(θh-θ)/p) if qk < θl then return false
restore(i) else dwo := false
if θ + qi < θl then return θ if dwo then return false
if θ > θh then return θ return true

else
θ := max(θ, FC(i + 1, max(θ, θl), θh))
restore(i)
if θ > θh then return θ

else restore(i)
return θ

Fig. 1. The FC algorithm of [10]

InFigure 1, a 2-dimensional array prune(i, j) is used to record the depth atwhich
the value vj ∈ D(xi) is removed by forward checking. Each stochastic variable
xsi has an upper bound, qi, on the probability that the values left in D(xsi) can
contribute to a solution. This is initially set to 1. The upper and lower bounds, θh

and θl are used to prune search. By setting θl = θh = θ, we can determine if the
optimal satisfaction is at least θ. By setting θl = 0 and θh = 1, we can determine
the optimal satisfaction.

48 T. Balafoutis and K. Stergiou

The calculation of these bounds in recursive calls is done as follows. Suppose
that the current assignment to a stochastic variable returns a satisfaction of θ0.
We can ignore other values for this variable if θ + p× θ0 ≥ θh. That is, if θ0≥(θh-
θ)/p. This gives the upper bound in the recursive call to FC on a stochastic
variable. Alternatively, we cannot hope to satisfy the constraints adequately if
θ + p× θ0+qi ≤ θl as qi is the maximum that the remaining values can contribute
to the satisfaction. That is, if θ0≤(θl-θ-qi)/p. This gives the lower bound in the
recursive call to FC on a stochastic variable. Finally, suppose that the current
assignment to a decision variable returns a satisfaction of θ. If this is more
than θl, then any other values must exceed θ to be part of a better policy.
Hence, we can replace the lower bound in the recursive call to FC on a decision
variable by max(θ, θl). Procedure restore, which is not shown, is called when a
tried assignment is rejected and when a backtrack occurs, to restore values that
have been removed from future variables and reset the value of qi for stochastic
variables.

Checking forwards fails if any variable has a domain wipeout (dwo), or (cru-
cially) if a stochastic variable has so many values removed that we cannot hope
to satisfy the constraints. When forward checking removes some value vj from
xsi, FC reduces qi by prob(xsi ← vj), the probability that xsi takes the value
vj . This reduction on qi is undone on backtracking. If FC ever reduces qi to less
than θl, it backtracks as it is impossible to set xsi and satisfy the constraints
adequately.

3.1 A Flaw in FC

As the next example shows, this last claim can be problematic. When the current
variable is a stochastic one, there are cases where, even if qi is reduced to less
than θl, the algorithm should continue going forward instead of backtracking
because the satisfaction of the future subproblem may contribute to the total
satisfaction. The example considers the case where we look for the maximum
satisfaction.

Example 1. Consider a problem consisting of one decision variable xd1 and
two stochastic variables xs2, xs3, all with {0, 1} domains. The probabilities
of the values are shown in Figure 2a where the search tree for the problem
is depicted. There is a constraint between xd1 and xs2 disallowing the tuple
<xd1 ← 0, xs2 ← 1>. There is also a constraint between xs2 and xs3 disal-
lowing the tuple <xs2 ← 1, xs3 ← 0>. Assume that we seek the maximum
satisfaction of the problem. That is, initially θl = 0 and θh = 1.

FC will first instantiate xd1 to 0 and forward check this assignment. As a
result, value 1 of xs2 will be deleted and the dashed nodes will be pruned.
Then the algorithm will explore the non-pruned subtree below xd1 ← 0 and
eventually will backtrack to xd1. At this point θ will be 0.5 (i.e. the satisfaction
of the explored subtree). Now when FC moves forward to instantiate xs2, θl will
be set to max(θl,θ)=max(0,0.5)=0.5. The subtree below xs2 ← 0, weighted by
prob(xs2 ← 0), gives 0.5 satisfaction. When assigning 1 to xs2, check will return

Algorithms for Stochastic CSPs 49

false because value 0 of xs3 will be removed and the remaining probability in
the domain of xs3 will be 0.4<θl. Therefore, FC will backtrack and terminate,
incorrectly returning 0.5 as the maximum satisfaction. Clearly, the maximum
satisfaction, which is achieved by the policy depicted with bold edges, is 0.7.

xs2

xs3

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

xd 1 0 1

a)

xs2

xs3

0 1

0 110

0.2 0.8

0.8 0.2 0.8 0.2

0 1

0 110

0.2 0.8

0.8 0.2 0.8 0.2

xd 1 0 1

b)

Fig. 2. Search trees of Examples 1 and 2

Function check correctly returns a failure when the current variable is a de-
cision one and for some future stochastic variable xsi forward checking reduces
qi below θl. In this case, there is not point in exploring the subtree below the
current assignment. However, when the current variable is a stochastic one and
for some future stochastic variable, qi falls below θl, it is not certain that the
currently explored policy cannot yield satisfaction greater than the threshold.
What we need is a way to determine if the maximum satisfaction offered by the
current stochastic variable is enough to lift the total satisfaction over the lower
satisfaction bound or not. Therefore, we need to take into account the following
quantities: 1) the already computed satisfaction of the previously assigned values
of the current variable, 2) the maximum satisfaction of the subtree below the
current assignment, 3) the sum of the probabilities of the following values of the
current variable (i.e. the maximum satisfaction that they can contribute). If the
sum of these quantities is lower than θl then the current assignment can be safely
rejected. Otherwise, we must continue expanding it. This idea is formulated in
more detail further below, after we describe a simple way to enhance the pruning
power of FC.

3.2 Improving FC

We can save search effort by performing stronger pruning inside function check.
When making forward checks and removing values from future stochastic vari-
ables, the FC algorithm of [10] exploits only a “local” view of the future problem.
But as values are removed from future stochastic variables, the maximum pos-
sible satisfaction of the current assignment is reduced. FC fails to exploit this
because it considers value removals from any future stochastic variable as “inde-
pendent” of value removals from other future stochastic variables. However, it is
possible that enough values are removed from a number of stochastic variables so
that the maximum possible satisfaction of the current assignment cannot exceed

50 T. Balafoutis and K. Stergiou

θl. The maximum possible satisfaction of an assignment vj to the current vari-
able xi is equal to

∏n
s=i+1

∑|D(xs)|
t=1 prob(xs ← vt) (weighted by the probability

of xi ← vj if xi is stochastic), where only values that have not been pruned
are considered. In words, we sum the probabilities of the remaining values for
all future stochastic variables and multiply the sums. Before explaining how we
can exploit this, we present an example that demonstrates the savings in search
effort that can be achieved through such reasoning.

Example 2. Consider a problem consisting of one decision variable xd1 and
two stochastic variables xs2, xs3, all with {0, 1} domains. The probabilities
of the values are shown in Figure 2b where the search tree of the problem
is depicted. There is a constraint between xd1 and xs2 disallowing the tu-
ples <xd1 ← 0, xs2 ← 0> and <xd1 ← 1, xs2 ← 0>. There is also a con-
straint between xd1 and xs3 disallowing the tuples <xd1 ← 0, xs3 ← 1> and
<xd1 ← 1, xs3 ← 1>. Assume that we are looking for the maximum satisfaction.

FC will first instantiate xd1 to 0 and forward check this assignment. As a re-
sult, values 0 and 1 will be removed from the D(xs2) and D(xs3) respectively.
Since q2 and q3 do not fall below θl, the algorithm will continue to make the
instantiations xs2 ← 1 and xs3 ← 0. After backtracking to xd1, the current sat-
isfaction θ for xd1 will be 0.64. Now FC will instantiate xd1 to 1, forward check
the assignment, remove values 0 and 1 from the domains of xs2 and xs3, and
proceed to instantiate the stochastic variables. Similarly as before, the satisfac-
tion of assignment xd1 ← 1 will be 0.64. Therefore, FC will return the maximum
satisfaction among the values of xd1, which is 0.64. To find this, FC needs to visit
six nodes in the search tree (the gray nodes in Figure 2b).

Consider again the point when after the satisfaction of assignment xd1 ← 0
has been computed, the algorithm instantiates xd1 to 1. Forward checking re-
moves values 0 and 1 from D(xs2) and D(xs3) respectively, and as a result the
maximum possible satisfaction of assignment xd1 ← 1 is equal to prob(xs2 ←
1)×prob(xs3 ← 0) = 0.64. This is not greater than the satisfaction of assign-
ment xd1 ← 0, and therefore, the algorithm need not proceed to instantiate the
stochastic variables. Since there is no other value in D(xd1), we can determine
that the satisfaction of the problem is 0.64. In this way, the problem is solved
visiting four instead of six nodes.

Figure 3 depicts the improved check function of FC. The identified flaw is cor-
rected in lines 10-13 where we differentiate between the case where the current
variable is a stochastic one and the case where it is a decision one. In both cases
we first compute ζi; the maximum satisfaction that the current assignment can
yield. This is computed as the product of the sums of probabilities of the values
that are left in the domains of the future stochastic variables. In this way we
get a better estimation of the maximum satisfaction that the current assignment
can provide and the efficiency of the algorithm, compared to the version given in
[10], is improved. Note that ζi is computed each time FC has filtered the domain
of a future variable. Alternatively, we can compute it once after FC has finished
with all future variables. In this case we can save repeating some computations
but may perform redundant consistency checks.

Algorithms for Stochastic CSPs 51

function check(xi ← vj , qi, θl, θ)
1: qi := qi - prob(xi ← vj)
2: for k := i + 1 to n
3: dwo := true
4: for each vl ∈ D(xk)
5: if prune(k, l) = 0 then
6: if inconsistent(xi ← vj , xk ← vl) then
7: prune(k, l) := i
8: if xk ∈ Xs then
9: ζi :=

∏n
s=i+1

∑|D(xs)|
t=1 prob(xs ← vt)

10: if xi ∈ Xs then
11: if ζi × prob(xi ← vj) + θ + qi < θl then return false
12: else
13: if ζi < θl then return false
14: else dwo := false
15: if dwo then return false
16: return true

Fig. 3. The improved check function of FC

If the current variable is a decision one and ζi falls below θl then we return false
as is is not possible to extend the current assignment in a way that the threshold
is satisfied. If the current variable is a stochastic one then we multiply ζi with
the probability of the current assignment, add the satisfaction (θ) yielded by
previously tried assignments to the current variable, add the sum of probabilities
(qi) of the remaining values for the current variable, and compare the resulting
quantity with θl. If it is lower then we return fail because we know that there is
no way to extend the current assignment, so that the threshold is satisfied, even
if the current assignment and the remaining assignments to the current variable
yield the maximum possible satisfaction.

4 Arc Consistency

Arc consistency (AC) is an important concept in CSPs since it is the basis of
constraint propagation in most CSP solvers. In this section we first define AC for
SCSPs and then describe an AC algorithm for SCSPs that can handle constraints
of any arity. We show that, apart from the case of domain wipeout, failure can
also be determined when enough values are removed from stochastic variables.
We also introduce a specialized pruning rule that can be used to remove values
from certain decision variables.

Before defining AC, we give a definition of consistency for values of decision
variables. To do this, we adjust the corresponding definitions for QCSPs given
in [2,3]. Intuitively, a value v ∈ D(xdi) is inconsistent if the assignment xdi ← v
cannot participate in any satisfying policy.

Definition 1. A value v ∈ D(xdi) is consistent iff there is a satisfying policy,
in which one scenario at least, includes the assignment xi ← v.

52 T. Balafoutis and K. Stergiou

Given the above definition, determining the consistency of a value involves find-
ing all solutions (satisfying policies) to a SCSP. The definition of AC and the
development of relevant filtering algorithms can hopefully help us perform prun-
ing by local reasoning. We first give some necessary notation. Given a SCSP
A =< X, S, D, P, C, Θ > we denote by Acj the SCSP in which only one con-
straint cj ∈ C is considered, i.e. the SCSP < X, S, D, P, cj , θj >. τ [xi] gives the
value that variable xi takes in tuple τ . A tuple of assignments τ is valid if none of
the values in τ has been removed from the domain of the corresponding variable.
A tuple τ of a constraint cj supports a value v ∈ xi iff τ [xi] = v, τ is valid, and
τ is allowed by cj .

Definition 2. A value v ∈ D(xdi) is arc consistent iff, for every constraint
cj ∈ C, v is consistent in Acj . A value v ∈ D(xsi) is arc consistent iff, for every
constraint cj ∈ C, there is a tuple that supports it. A SCSP is arc consistent iff
all values of all variables are arc consistent.

Note that we differentiate between decision and stochastic variables. The defini-
tion of AC for values of decision variables subsumes the classical AC definition
(which is used for values of stochastic variables). The above definition covers
the general case where they may be multiple chance constraints. But in the
problems considered here, where there is only a single global chance constraint,
determining if a given SCSP is AC is a task just as hard as solving it. This is
analogous to achieving AC in a classical CSP where all constraints are combined
in a conjunction.

In the following we describe an algorithm that is not complete (i.e. it does not
compute the AC-closure of a given SCSP) but can achieve pruning of some arc
inconsistent values through local reasoning, and therefore in some cases detect
arc inconsistency. In addition, the algorithm can determine failure if the maxi-
mum possible satisfaction falls below θl because of deletions from the domains
of stochastic variables. The AC algorithm we use as basis is GAC2001/3.1 [1].
This is a coarse-grained (G)AC algorithm that does not require complicated data
structures, while it achieves an optimal worst-case time complexity in its binary
version. In addition to these features, GAC2001/3.1 facilitates the implementa-
tion of a specialized pruning rule that can remove arc inconsistent values from
certain decision variables through local reasoning. The motivation for this rule
is demonstrated in the following example.

Example 3. Consider a problem consisting of two decision variables xd1 and xd2
and two stochastic variables xs3, xs4, all with {0, 1} domains. The probabilities
of the values are shown in Figure 4 where the search tree of the problem is
depicted. There is a ternary constraint c1 with var(c1) = {xd2, xs3, xs4} which
disallows tuples <xd2 ← 0, xs3 ← 0, xs4 ← 0> and <xd2 ← 0, xs3 ← 1, xs3 ←
1>. Assume that we are trying to determine if the satisfaction is at least 0.6.

It is easy to see that any policy which includes assignment xd2 ← 0 can-
not achieve more than 0.5 satisfaction since assigning 0 to xd2 leaves {xs3 ←
0, xs4 ← 1} and {xs3 ← 1, xs4 ← 0} as the only possible sets of assignments for

Algorithms for Stochastic CSPs 53

xs3

xs4

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

xd 2 0

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

1

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

0

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

1

0 1xd 1

Fig. 4. Search tree of Example 3

variables xs3 and xs4, and these together yield 0.5 satisfaction. Therefore, we
can safely prune the search tree by deleting value 0 of xd2 prior to search.

We can generalize the idea illustrated in the example to the case where we reach a
block of consecutive decision variables during search. Then if we identify certain
values of these variables that, if assigned, result in policies which cannot yield
satisfaction more than the current lower bound θl, then we know that these values
are arc inconsistent and can thus prune them. We have incorporated this idea in
the AC algorithm described below. Similar reasoning can be applied on decision
variables further down in the variable sequence (i.e. not in the current block).
However, identifying arc inconsistent values for such variables is an expensive
process since it requires search.

Our algorithm for arc consistency in SCSPs is shown in Figure 5. Before
explaining the algorithm we give some necessary notation and definitions.

– We assume that the tuples in each constraint are ordered according to the
lexicographic ordering. In the while loop of line 26, NIL denotes that all
tuples in a constraint have been searched.

– As in GAC2001/3.1, Last((xi, v), cj) is the most recently discovered tuple
in cj that supports value v ∈ D(xi), where xi ∈ var(cj). Initially, each
Last((xi, v), cj) is set to 0. c var denotes the currently instantiated variable.
If the algorithm is used for preprocessing, c var is 0.

– When we say that “variable xi belongs to the current stage in X” we mean
that c var is a decision variable and xi belongs to the same block of variables
as c var. In case Stochastic AC is used for preprocessing, we say “variable
xi belongs to the first stage in X” meaning that the first block of variables
in X is composed of decision variables and xi belongs to this block.

– θ(xi,v),cj
holds the maximum satisfaction that can be achieved by the possible

assignments of the stochastic variables after decision variable xi in var(cj)
if value v is given to xi. This is calculated by summing the probabilities of
the tuples that support xi ← v in cj . In this context, the probability of a
tuple τ =<. . . , xi ← v, . . .> is the product of the probabilities of the values
that the stochastic variables after xi take in τ .

Stochastic AC uses a queue (or stack) of variable-constraint pairs. Essentially
it operates in a similar way to GAC2001/3.1 with additional fail detection and

54 T. Balafoutis and K. Stergiou

function Stochastic AC(c var, θl)
1: Q ← {xi, cj |cj ∈ C, xi ∈ var(cj)}
2: if c var = 0 then
3: for each (xi, cj)|xi ∈ var(cj), xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj)
4: for each v ∈ D(xi)
5: θ(xi,v),cj

← 0
6: for τ=Last((xi, v), cj) to last tuple in cj

7: if τ [xi] = v and τ is valid and τ is allowed by cj then
8: θτ ←

Q|var(cj)|
s=xi+1 prob(xs ← τ [xs])

9: θ(xi,v),cj
← θ(xi,v),cj

+ θτ

10: if xi belongs to the first stage in X and θ(xi,v),cj
< θl then

11: remove v from D(xi)
12: if D(xi) is wiped out then return false
13: while Q not empty do
14: select and remove a pair (xi, cj) from Q

15: fail ← false
16: if Revise(xi, cj , c var, θl,fail)
17: if fail=true or a domain is wiped out then return false
18: Q ← Q ∩ {(xk, cm|cm ∈ C, xi, xk ∈ var(cm), m �= j, i �= k}
19: return true

function Revise(xi, cj , c var, θl,fail)
20: DELETION ← FALSE
21: for each value v ∈ D(xi)
22: if Last((xi, v), cj) is not valid then
23: if xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj) then
24: θ(xi,v),cj

← θ(xi,v),cj
− θLast((xi,v),cj)

25: τ ← next tuple in the lexicographic ordering
26: while τ �= NIL

27: if τ [xi] = v and τ is allowed by cj then
28: if τ is valid then break
29: else if xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj) then
30: θ(xi,v),cj

← θ(xi,v),cj
− θτ

31: τ ← next tuple in the lexicographic ordering
32: if xi, c var ∈ Xd and xi belongs to the current stage in X and θ(xi,v),cj

< θl then
33: remove v from D(xi)
34: DELETION ← TRUE
35: else if τ �= NIL then
36: Last((xi, v), cj) ← τ

37: else
38: remove v from D(xi)
39: if xi ∈ Xs

40: ζi :=
Qn

s=c var+1

P|D(xs)|
t=1 prob(xs ← vt)

41: if ζi < θl then
42: fail ← true
43: return true
44: DELETION ← TRUE
45: return DELETION

Fig. 5. An arc consistency algorithm for stochastic CSPs

Algorithms for Stochastic CSPs 55

pruning operations to account for the stochastic nature of the problem. Initially,
all variable-constraint pairs (xi, cj), where xi ∈ var(cj), are inserted in Q. Then,
a preprocessing step, which implements the pruning rule described above, takes
place (lines 2-12). For every decision variable xi and any constraint cj where
xi participates, such that the constraint includes stochastic variables after xi in
vars(cj) (this is tested in line 3), we iterate through the available values in D(xi).
For each such value v we compute the maximum satisfaction θ(xi,v),cj

that the
stochastic variables after xi in vars(cj) can yield, under the assumption that xi

is given value v. This is computed as the sum of satisfaction for all sub-tuples
that support xi ← v in cj . The satisfaction of a sub-tuple is simply the product
of probabilities for the values of the stochastic variables after xi ← v in the
tuple (line 8). In case xi belongs to the first stage in the problem and θ(xi,v),cj

is less than θl then we know that the assignment xi ← v cannot be part of a
policy with satisfaction greater than θl and therefore v is removed from D(xi).
If no domain wipeout is detected then the algorithm proceeds with the main
propagation phase.

During this phase pairs (xi, cj) are removed from Q and function Revise is
called to look for supports for the values of xi in cj . For each value v ∈ D(xi)
we first check if Last((xi, v), cj) is still valid. If it is we proceed with the next
value. Otherwise we search cj ’s tuples until one that supports v is found or
there are no more tuples (lines 25-31). In the former case, Last((xi, v), cj) is
updated accordingly (line 36). In the latter case, v is removed from D(xi) (line
38). If xi is a decision variable then θ(xi,v),cj

is reduced while the search for a
support in cj proceeds. This is done as follows: Whenever a tuple τ that was
previously a support for xi ← v in cj but is no longer one (because it is no
longer valid) is encountered, θ(xi,v),cj

is reduced by θτ (lines 24,30). As in the
preprocessing phase, θτ is computed as the product of probabilities for the values
of the stochastic variables after xi ← v in τ . If θ(xi,v),cj

falls below θl, the current
variable is a decision one and xi belongs to the same stage as it, then v is removed
from D(xi) (lines 32,33).

If a value of a stochastic variable is removed then we check if the remaining
values in the domains of the future stochastic variables can contribute enough to
the satisfaction of the problem so that the lower bound is met. This is done in a
way similar to the improved function check of FC. That is, by comparing quantity
∏n

s=c var+1
∑|D(xs)|

t=1 prob(xs ← vt) to θl. If it is lower then the algorithm returns
failure as the threshold cannot be met. If this occurs during search then the
currently explored policy should be abandoned and a new one should be tried.

The Pruning Rule for Binary Constraints. Pruning of decision variables
that belong to the current decision stage can be made stronger when dealing with
binary constraints. For each binary constraint cj , where var(cj) = {xdi, xsl},
and each value v ∈ D(xdi), we can calculate the maximum possible satisfaction
of assignment xdi ← v on constraint cj as θ(xdi,v),xsl

=
∑|D(xsl)|

t=Last((xdi,v),xsl)
, s.t.

t and v are compatible. In this case Last((xdi, v), xsl) is the most recently dis-
covered value in D(xsl) that supports v. Therefore, the maximum satisfaction

56 T. Balafoutis and K. Stergiou

of assignment xdi ← v is the product of θ(xdi,v),xsl
for all constraints cj , where

var(cj) = {xdi, xsl} and xsl is after xdi in the variable sequence. By compar-
ing this quantity with θl (lines 10 and 32), we can exploit the probabilities of
future stochastic variables in a more “global” way, as in the enhancement of FC
described in Section 3, and thus stronger pruning can be achieved.

Note that a similar, but more involved, enhancement is possible for non-
binary constraints but in that case we have to be careful about future stochastic
variables that appear in multiple constraints involving xdi. When calculating
the maximum possible satisfaction we have to make sure that the probabilities
of the values of each such stochastic variable are taken into account only once.
When dealing with binary constraints no such issue arises, assuming that each
stochastic variable can participate in at most one constraint with xdi.

We now analyze the time complexity of algorithm Stochastic AC. We assume
that the maximum domain size is D and the maximum constraint arity is k.

Proposition 1. The worst-case time complexity of Stochastic AC is
O(enk2Dk+1).

Proof. The preprocessing phase of lines 2-12 is executed for decision variables.
For every constraint cj that includes a decision variable xi and at least one later
stochastic variable, we go through all values in D(xi). For each such value v,
we iterate through the, at most, Dk−1 tuples that include assignment xi ← v.
Assuming that the calculation of the product of probabilities requires O(k) oper-
ations, the complexity of the preprocessing phase is O(eDkDk−1k)=O(ek2Dk).

In the main propagation phase there are at most kD calls to Revise for any
constraint cj , one for every deletion of a value from the k variables in var(cj). In
the body of Revise (called for xi ∈ var(cj)) there is a cost of O(kDk−1) to search
for supporting tuples for the values of xi (see [1] for details). The complexity of
the pruning rule for decision variables is constant. The failure detection process
of lines 35-39 costs O(nD) in the worst case. Therefore, the asymptotic cost of
one call to Revise is O(kDk−1nD)=O(nkDk). Since there can be kD calls to
Revise for each of the e constraints, and the use of Last((xi, v), cj) ensures that
in all calls the search for support for v ∈ D(xi) on cj will never check a tuple
more than once, the complexity of Stochastic AC is O(enk2Dk+1) ��
Since the preprocessing phase alone costs O(ek2Dk), we may want to be selective
in the constraints on which the pruning rule is applied, based on properties such
as arity and domain size of the variables involved.

The space complexity of the algorithm is determined by the data structures
required to store Last((xi, v), cj) and θ(xi,v),cj

. Both need O(ekD) space, so this
is the space complexity of Stochastic AC. However, this may rise to O(enkD)
when Stochastic AC is maintained during search and no advanced mechanism
is used to restore the Last((xi, v), cj) and θ(xi,v),cj

structures upon failed in-
stantiations and backtracks. This may be too expensive in large problems but
it is always possible to reduce the memory requirements by dropping structures
Last((xi, v), cj) and θ(xi,v),cj

and reverting to a (G)AC-3-type of processing.

Algorithms for Stochastic CSPs 57

5 Experiments

We ran some preliminary experiments on randomly generated binary SCSPs. The
best algorithm was the improved version of FC coupled with AC preprocessing.
AC appears to be advantageous when used for preprocessing, but MAC is slower
than FC on these problems. To generate random SCSPs we used a model with
four parameters: the number of variables n, the uniform domain size d, the
constraint density p (as a fraction of the total possible constraints), and the
constraint tightness q (as a fraction of the total possible allowed tuples). The
probabilities of the values for the stochastic variables were randomly distributed.

0.01

0.1

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cp
u

tim
e

(s
ec

on
ds

)

constraint looseness

1-stage
alternating

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
de

s

constraint looseness

1-stage
alternating

Fig. 6. AC+FC on random problems

Figure 6 demonstrates average results (over 50 instances) from SCSPs where
n = 20, d = 3, p = 0.1, and q is varying from 0.1 to 0.9 in steps of 0.1. We show
the cpu time (in seconds) and node visits required by FC with AC preprocessing
to find the maximum satisfaction. The curve entitled “1-stage” corresponds to
one-stage problems where 10 decision variables are followed by 10 stochastic
ones, while the curve entitled “alternating” corresponds to problems where there
is an alternation of decision and stochastic variables in the sequence. As we can
see, both types of problems give similar results. When there are few allowed
combinations of values per constraint, problems are easy as the algorithm quickly
determines that most policies are not satisfying. When there are many allowed
combinations of values per constraint, problems are much harder since there are
many satisfying policies, and as a result, a larger part of the search tree must
be searched to find the maximum satisfaction.

6 Conclusion and Future Work

We developed algorithms for SCSPs based on the exploration of the policy space.
We first identified and corrected a flaw in the FC procedure proposed by Walsh.
We also extended FC to better take advantage of probabilities and thus achieve

58 T. Balafoutis and K. Stergiou

stronger pruning. Then we defined AC for SCSPs and introduced an AC algo-
rithm that can handle constraints of any arity. We ran some preliminary exper-
iments, but further experimentation is necessary to evaluate the practical value
for the proposed algorithms.

In the future we intend to further enhance the backtracking algorithms pre-
sented here, both in terms of efficiency (e.g. by adding capabilities such as back-
jumping), and in terms of applicability (e.g. by extending them to deal with
multiple chance constraints, joint probabilities for stochastic variables and opti-
mization problems). Also we plan to investigate alternative approaches to solving
stochastic CSPs. In particular, techniques adapted from stochastic programming
[8] and on-line optimization [5]. Some techniques of this kind have been already
successfully developed in [7].

Acknowledgements

This work has been supported by GR Pythagoras grant number 1349 under the
Operational Program for Education and Initial Training.

References

1. C. Bessière, J.C. Régin, R. Yap, and Y. Zhang. An Optimal Coarse-grained Arc
Consistency Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

2. L. Bordeaux, M. Cadoli, and T. Mancini. CSP Properties for Quantified Con-
straints: Definitions and Complexity. In Proceedings of AAAI-2005, pages 360–365,
2005.

3. Lucas Bordeaux. Boolean and interval propagation for quantified constraints. In
Proceedings of the CP-05 Workshop on Quantification in Constraint Programming,
pages 16–30, 2005.

4. D. Dubois, H. Fargier, and H. Prade. Possibility Theory in Constraint Satisfaction
Problems: Handling Priority, Preference and Uncertainty. Applied Intelligence,
6(4):287–309, 1996.

5. A. Fiat and G.J. Woeginger. Online Algorithms, volume 1442. LNCS, 1997.
6. M.L. Littman, S.M. Majercik, and T. Pitassi. Stochastic Boolean Satisfiability.

Journal of Automated Reasoning, 27(3):251–296, 2000.
7. S. Manandhar, A. Tarim, and T. Walsh. Scenario-based Stochastic Constraint

Programming. In Proceedings of IJCAI-03, pages 257–262, 2003.
8. A. Ruszczynski and A. Shapiro. Stochastic Programming, Handbooks in OR/MS,

volume 10. Elsevier Science, 2003.
9. G. Verfaillie and N. Jussien. Constraint Solving in Uncertain and Dynamic Envi-

ronments: A Survey. Constraints, 10(3):253–281, 2005.
10. T. Walsh. Stochastic Constraint Programming. In Proceedings of ECAI-2002,

pages 111–115, 2002.

	Introduction
	Stochastic Constraint Satisfaction
	Forward Checking
	A Flaw in FC
	Improving FC

	Arc Consistency
	Experiments
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

