
Conflict Directed Variable Selection Strategies
for Constraint Satisfaction Problems

Thanasis Balafoutis and Kostas Stergiou

Department of Information and Communication Systems Engineering
University of the Aegean, Samos, Greece
email: {abalafoutis,konsterg}@aegean.gr

Abstract. It is well known that the order in which variables are in-
stantiated by a backtracking search algorithm can make an enormous
difference to the search effort in solving CSPs. Among the plethora of
heuristics that have been proposed in the literature to efficiently order
variables during search, a significant recently proposed class uses the
learning-from-failure approach. Prime examples of such heuristics are
the wdeg and dom/wdeg heuristics of Boussemart et al. which store and
exploit information about failures in the form of constraint weights. The
efficiency of all the proposed conflict-directed heuristics is due to their
ability to learn though conflicts encountered during search. As a result,
they can guide search towards hard parts of the problem and identify
contentious constraints. Such heuristics are now considered as the most
efficient general purpose variable ordering heuristic for CSPs. In this pa-
per we show how information about constraint weights can be used in
order to create several new variants of the wdeg and dom/wdeg heuris-
tics. The proposed conflict-driven variable ordering heuristics have been
tested over a wide range of benchmarks. Experimental results show that
they are quite competitive compared to existing ones and in some cases
they can increase efficiency.

1 Introduction

Constraint satisfaction problems (CSPs) and propositional satisfiability (SAT)
are two automated reasoning technologies that have a lot in common regarding
the approaches and algorithms they use for solving combinatorial problems. Most
complete algorithms from both paradigms use constraint propagation methods
together with variable ordering heuristics to improve search efficiency. Learning
from failure has become a key component in solving combinatorial problems in
the SAT community, through literals learning and weighting, e.g. as implemented
in the Chaff solver [7]. This approach is based on learning new literals through
conflict analysis and assigning weights to literals based on the number of times
they cause a failure during search. This information can be then exploited by
the variable ordering heuristic to efficiently choose the variable to assign at each
choice point.

In the CSP community, learning from failure has followed a similar direction
in recent years, in particular with respect to novel variable ordering heuristics.



Boussemart et al. were the first to introduce SAT influenced heuristics that
learn from conflicts encountered during search [3]. In their approach, constraint
weights are used as a metric to guide the variable ordering heuristic towards hard
parts of the problem. Constraint weights are continuously updated during search
using information learned from failures. The advantage that these heuristics
have is that they use previous search states as guidance, while most formerly
proposed heuristics either use the initial or the current state. The heuristics of
[3], called wdeg and dom/wdeg, are now probably considered as the most efficient
general purpose variable ordering heuristic for CSPs. Sunsequently, a number of
alternative heuristics based on learning during search were proposed [8, 4, 6].

As discussed by Grimes and Wallace, heuristics based on constraint weights
can be conceived in terms of an overall strategy that except from the standard
Fail-First Principle also obeys the Contention Principle, which states that vari-
ables directly related to conflicts are more likely to cause a failure if they are
chosen instead of other variables [6].

In this paper we focus on conflict-driven variable ordering heuristics based
on constraint weights. We concentrate on an investigation of new general pur-
pose variants of conflict-driven heuristics. These variants differ from wdeg and
dom/wdeg in the way they assign weights to constraints. First we propose three
new variants of the wdeg and dom/wdeg heuristics that record the constraint that
is responsible for any value deletion during search. These heuristics then exploit
this information to update constraint weights upon detection of failure. We also
examine a SAT influenced weight aging strategy that gives greater importance
to recent conflicts. Finally, we propose a new heuristic that tries to better iden-
tify contentious constraints by detecting all the possible conflicts after a failure.
Experimental results from various random, academic and real world problems
show that some of the proposed heuristics are quite competitive compared to
existing ones and in some cases they can increase efficiency.

The rest of the paper is organized as follows. Section 2 gives the necessary
background material and an overview on the existing conflict-driven variable
ordering heuristics. In Section 3 we propose several new general purpose variants
of conflict-driven variable ordering heuristics. In Section 4 we experimentally
compare the proposed heuristics to dom/wdeg on a variety of real, academic and
random problems. Finally, conclusions are presented in Section 5.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C ), where X is a set
containing n variables {x1, x2, ..., xn}; D is a set of domains {D(x1), D(x2),...,
D(xn)} for those variables, with each D(xi) consisting of the possible values
which xi may take; and C is a set of constraints {c1, c2, ..., ck} between variables
in subsets of X. Each ci ∈ C expresses a relation defining which variable as-
signment combinations are allowed for the variables vars(ci) in the scope of the
constraint. Two variables are said to be neighbors if they share a constraint. The
arity of a constraint is the number of variables in the scope of the constraint.



The degree of a variable xi, denoted by Γ (xi) , is the number of constraints in
which xi participates. A binary constraint between variables xi and xj will be
denoted by cij . In this paper we focus on binary CSPs. However, the proposed
variable ordering heuristics are generic and can be applied on problems with
constraints of any arity.

A partial assignment is a set of tuple pairs, each tuple consisting of an instan-
tiated variable and the value that is assigned to it in the current search state.
A full assignment is one containing all n variables. A solution to a CSP is a full
assignment such that no constraint is violated.

An arc is a pair (c, xi) where xi ∈ vars(c). Any arc (cij , xi) will be alterna-
tively denoted by the pair of variables (xi,xj), where xj ∈ vars(cij). That is, xj

is the other variable involved in cij . An arc (xi,xj) is arc consistent (AC) iff for
every value a ∈ D(xi) there exists at least one value b ∈ D(xj) such that the
pair (a,b) satisfies cij . In this case we say that b is a support of a on arc (xi,xj).
Accordingly, a is a support of b on arc (xj ,xi). A problem is AC iff there are
no empty domains and all arcs are AC. The application of AC on a problem
results in the removal of all non-supported values from the domains of the vari-
ables. The definition of arc consistency for non-binary constraints, usually called
generalized arc consistency (GAC), is a direct extension of the definition of AC.
A support check (consistency check) is a test to find out if two values support
each other. The revision of an arc (xi,xj) using AC verifies if all values in D(xi)
have supports in D(xj). A domain wipeout (DWO) revision is one that causes
a DWO. That is, it results in an empty domain.

In the following will use MAC (maintaining arc consistency) [9, 1] as our
search algorithm. In MAC a problem is made arc consistent after every as-
signment, i.e. all values which are arc inconsistent given that assignment, are
removed from the current domains of their variables. If during this process a
DWO occurs, then the last value selected is removed from the current domain
of its variable and a new value is assigned to the variable. If no new value exists
then the algorithm backtracks.

2.1 Overview of existing conflict-driven variable ordering heuristics

The order in which variables are assigned by a backtracking search algorithm has
been understood for a long time to be of primary importance. A variable ordering
can be either static, where the ordering is fixed and determined prior to search,
or dynamic, where the ordering is determined as the search progresses. Dynamic
variable orderings are considerably more efficient and have thus received much
attention in the literature. One common dynamic variable ordering strategy,
known as “fail-first”, is to select as the next variable the one likely to fail as
quickly as possible. All other factors being equal, the variable with the smallest
number of viable values in its (current) domain will have the fewest subtrees
rooted at those values, and therefore, if none of these contain a solution, the
search can quickly return to a path that leads to a solution.

Recent years have seen the emergence of numerous modern heuristics for
choosing variables during CSP search. The so called conflict-driven heuristics



exploit information about failures gathered throughout search and recorded in
the form of constraint weights.

Boussemart et al. [3] proposed the first conflict-directed variable ordering
heuristics. In these heuristics, every time a constraint causes a failure (i.e. a
domain wipeout) during search, its weight is incremented by one. Each variable
has a weighted degree, which is the sum of the weights over all constraints in
which this variable participates. The weighted degree heuristic (wdeg) selects
the variable with the largest weighted degree. The current domain of the vari-
able can also be incorporated to give the domain-over-weighted-degree heuristic
(dom/wdeg) which selects the variable with minimum ratio between current do-
main size and weighted degree. Both of these heuristics (especially dom/wdeg)
have been shown to be extremely effective on a wide range of problems.

Grimes and Wallace [6] proposed alternative conflict-driven heuristics that
consider value deletions as the basic propagation events associated with con-
straint weights. That is, the weight of a constraint is incremented each time
the constraint causes one or more value deletions. They also used a sampling
technique called random probing with which they can uncover cases of global
contention, i.e. contention that holds across the entire search space.

The heuristics of [6] work as follows:

– constraint weights are increased by the size of the domain reduction leading
to a DWO.

– whenever a domain is reduced in size during constraint propagation, the
weight of the constraint involved is incremented by 1.

– whenever a domain is reduced in size, the constraint weights are increased
by the size of domain reduction (allDel heuristic).

3 Heuristics based on weighting constraints

As stated in the previous section, the wdeg and dom/wdeg heuristics associate
a counter, called weight, with each constraint of a problem. These counters are
updated during search whenever a DWO occurs. Although experimentally it
has been shown that these heuristics are extremely effective on a wide range of
problems, in theory it seems quite plausible that they may not always assign
weights to constraints in an accurate way. To better illustrate our conjecture
about the accuracy in assigning weights to constraints, we give the following
example.

Example 1. Assume we are using MAC-3 (i.e. MAC with AC-3) to solve a CSP
(X, D, C) where X includes, among others, the three variables {xi, xj , xk}, all
having the same domain {a, b, c, d, e}, and C includes, among others, the two
binary constraints cij , cik. Also assume that a conflict-driven variable ordering
heuristic (e.g. dom/wdeg) is used, and that at some point during search AC
tries to revise variable xi. That is, it tries to find supports for the values in
D(xi) in the constraints where xi participates. Suppose that when xi is revised
against cij , values {a, b, c, d} are removed from D(xi) (i.e. they do not have a



support in D(xj)). Also suppose that when xi is revised against cik, value {e} is
removed from D(xi) and hence a DWO occurs. Then, the dom/wdeg heuristic
will increase the weight of constraint cik by one but it will not change the weight
of cij .

It is obvious from this example that although constraint cij removes more
values from D(xi) than cik, its important indirect contribution to the DWO is
ignored by the heuristic.

A second point regarding potential inefficiencies of wdeg and dom/wdeg has
to do with the order in which revisions are made by the AC algorithm used.
Coarse-grained AC algorithms, like AC-3, use a revision list to propagate the
effects of variable assignments. It has been shown that the order in which the
elements of the list are selected for revision affects the overall cost of search.
Hence a number of revision ordering heuristics have been proposed [10, 2]. In
general, revision ordering and variable ordering heuristics have different tasks
to perform when used in a search algorithm like MAC. Before the appearance
of conflict-driven heuristics there was no way to achieve an interaction with
each other, i.e. the order in which the revision list was organized during the
application of AC could not affect the decision of which variable to select next
(and vice versa). The contribution of revision ordering heuristics to the solver’s
efficiency was limited to the reduction of list operations and constraint checks.

However, when a conflict-driven variable ordering heuristic like dom/weg is
used, then there are cases where the decision of which arc (or variable) to revise
first can affect the variable selection. To better illustrate this interaction we give
the following example.

Example 2. Assume that we want to solve a CSP (X, D, C) using a conflict-
driven variable ordering heuristic (e.g. dom/wdeg), and that at some point dur-
ing search the following AC revision list is formed: Q={(x1), (x3), (x5)}. Suppose
that revising x1 against constraint c12 leads to the DWO of D(x1), i.e. the re-
maining values of x1 have no support in D(x2). Suppose also that the revision of
x5 against constraint c56 leads to the DWO of D(x5), i.e. the remaining values
of x5 have no support in D(x6). Depending on the order in which revisions are
performed, one or the other between the two possible DWOs will be detected.
If a revision ordering heuristic R1 selects x1 first then the DWO of D(x1) will
be detected and the weight of constraint c12 will increased by 1. If some other
revision ordering heuristic R2 selects x5 first then the DWO of D(x5) will be de-
tected, but this time the weight of a different constraint (c56) will increased by 1.
Although the revision list includes two variables (x1, x5) that can cause a DWO,
and consequently two constraint weights can be increased (c12, c56), dom/wdeg
will increase the weight of only one constraint depending on the choice of the
revision heuristic. Since constraint weights affect the choices of the variable or-
dering heuristic, R1 and R2 can lead to different future decisions for variable
instantiation. Thus, R1 and R2 may guide search to different parts of the search
space.



From the above example it becomes clear that known heuristics based on
constraint weights are quite sensitive to revision orderings and their performance
can be affected by them.

In order to overcome the above described weaknesses that the weighted degree
heuristics seem to have, we next describe a number of new variable ordering
heuristics which can be seen as variants of wdeg and dom/weg.

3.1 Constraints responsible for value deletions

The first enhancement to wdeg and dom/wdeg tries to alleviate the problem
illustrated in Example 1. To achieve this, we propose to record the constraint
which is responsible for each value deletion from any variable in the problem. In
this way, once a DWO occurs during search we know which constraints have, not
only directly, but also indirectly contributed to the DWO. Based on this idea,
when a DWO occurs in a variable xi, constraint weights can be updated in the
following three alternative ways:

– Heuristic H1 : for every constraint that is responsible for any value deletion
from D(xi), we increase its weight by one.

– Heuristic H2 : for every constraint that is responsible for any value deletion
from variable D(xi), we increase its weight by the number of value deletions.

– Heuristic H3 : for every constraint that is responsible for any value deletion
from variable D(xi), we increase its weight by the normalized number of
value deletions. That is, by the ratio between the number of value deletions
and the size of D(xi).

The way in which the new heuristics update constraint weights is displayed
in the following example.

Example 3. Assume that when solving a CSP (X, D, C), the domain of some
variable e.g. x1 is wiped out. Suppose that D(x1) initially was {a, b, c, d, e}
and each of the values was deleted because of constraints: {c12, c12, c13, c12, c13}
respectively. The proposed heuristics will assign constraint weights as follows:
H1(weightH1[c12] = weightH1[c13] = 1), H2(weightH2[c12] = 3, weightH2[c13] =
2) and H3(weightH3[c12] = 3/5, weightH3[c13] = 2/5)

Heuristics H1, H2, H3 are closely related to the three heuristics proposed
by Grimes and Wallace [6].

The last two heuristics in [6], record constraints responsible for value dele-
tions and use this information to increase weights. However, the weights are
increased during constraint propagation in each value deletion for all variables.
Our proposed heuristics differ by increasing constraints weights only when a
DWO occurs. As discussed in [6], DWOs seem to be particularly important
events in helping identify hard parts of the problem. Hence we focus on infor-
mation derived from DWOs and not just any value deletion.



3.2 Constraint weight aging

Most of the state-of-the-art SAT solvers like BerkMin [5] and Chaff [7], use the
strategy of weight “aging”. In such solvers, each variable is assigned a counter
that stores the number of clauses responsible for at least one conflict . The value
of this counter is updated during search. As soon as a new clause responsible for
the current conflict is derived, the counters of the variables, whose literals are in
this clause, are incremented by one. The values of all counters are periodically
divided by a small constant greater than 1. This constant is equal to 2 for Chaff
and 4 for BerkMin. In this way, the influence of “aged” clauses is decreased and
preference is given to recently deduced clauses.

Inspired from SAT solvers, we propose here the use of “aging” to periodi-
cally age constraint weights. As in SAT, constraint weights can be “aged” by
periodically dividing their current value by a constant greater than 1. The pe-
riod of divisions can be set according to a specified number of backtracks during
search. With such a strategy we give greater importance to recently discovered
conflicts. The following example illustrates the improvement that weight “aging”
can contribute to the solver’s performance.

Example 4. Assume that in a CSP (X, D, C) with D={0,1,2}, we have a ternary
constraint c123 ∈ C for variables x1, x2, x3 with disallowed tuples {(0,0,0), (0,0,1),
(0,1,1), (0,2,2)}. When variable x1 is set to a value different from 0 during search,
constraint c123 is not involved in a conflict and hence its weight will not increase.
However, in a branch that includes assignment x1 = 0, constraint c123 becomes
highly ”active” and a possible DWO in variable x2 or x3 should increase the
importance of constraint c123 (more that a simple increment of its weight by
one). We need a mechanism to quickly adopt changes in the problem caused
by a value assignment. This can be done, by “aging” the weights of the other
previously active constraints.

3.3 Fully assigned weights

When arc consistency is maintained during search using a coarse grained algo-
rithm like AC-3, a revision list is created after each variable assignment. The
variables that have been inserted into the list are removed and revised in turn.
We observed that in the same revision list, different revision ordering heuristics
can lead to the DWOs of different variables. To better illustrate this, we give
the following example.

Example 5. Assume that we use two different revision ordering heuristic R1, R2

to solve a CSP (X, D, C), and that at some point during search the following AC
revision list is formed for R1 and R2. R1:{X1,X2}, R2:{X2,X1}. We also assume
the following: a) The revision of X1 deletes some values from the domain of X1

and it causes the addition of the variable X3 in the revision list. b) The revision
of X2 deletes some values from the domain of X2 and it causes the addition of
the variable X4 in the revision list. c) The revision of X3 deletes some values
from the domain of X1. d) The revision of X4 deletes some values from the



domain of X2. e). A DWO occurs after a sequential revision of X3 and X1. f )
A DWO occurs after a sequential revision of X4 and X2. Considering the R1

list, the revision of X1 is fruitful and adds X3 in the list (R1:{X3,X1}). The
sequential revision of X3 and X1 leads to the DWO of X1. Considering the R2

list, the revision of X2 is fruitful and adds X4 in the list (R2:{X4,X2}). The
sequential revision of X4 and X2 leads to the DWO of X2.

From the above example it is clear that although only one DWO is identified
in a revision list, both X1 and X2 can be responsible for this. In R1 where X1 is
the DWO variable, we can say that X2 is also a “potential” DWO variable i.e.
it would be a DWO variable, if the R2 revision ordering was used. The question
that arises here is: how can we identify the “potential” DWO variables that
exists on a revision list? A first observation that can be helpful in answering this
question is that ”potential” DWO variables are among variables that participate
in fruitful revisions.

Based on this observation, we propose here a new conflict-driven variable
ordering heuristic that takes into account the ”potential” DWO variables. This
heuristic increases the weights of constraints that are responsible for a DWO by
one (as wdeg heuristic does) and also, only for revision lists that lead to a DWO,
increases by one the weights of constraints that participates in fruitful revisions.
Hence, to implement this heuristic we record all variables that delete at least
one value during the application of AC. If a DWO is detected, we increase the
weight of all these variables.

An interesting direction for future work can be a more selective identification
of “potential” DWO variables.

4 Experiments and results

In this section we experimentally investigate the behavior of the new proposed
variable ordering heuristics on several classes of real, academic and random prob-
lems. All benchmarks are taken from C. Lecoutre’s web page1, where the reader
can find addition details about the description and the formulation of all the
tested benchmarks. We compare the new proposed heuristics with dom/wdeg
and allDel (whenever a domain is reduced in size, the constraint weights are
increased by the size of domain reduction). Regarding the heuristics of Section
3.1, we only show results from dom/wdegH1, dom/wdegH2 and dom/wdegH3,
denoted as H1, H2 and H3 for simplicity, which are more efficient than the
corresponding versions that do not take the domain size into account. In our
tests we have used the following measures of performance: cpu time in seconds
(t) and number of visited nodes (n). The solver we used applies d-way branching
and lexicographic value ordering. It also employs restarts. Concerning the restart
policy, the initial number of allowed backtracks for the first run has been set to
10 and at each new run the number of allowed backtracks increases by a factor
of 1.5. Regarding the aging heuristic, we have select to periodically decrease all
1 http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/



constraint weights by a factor of 2, with the period set to 20 backtracks. Our
search algorithm is MGAC-3, denoting MAC with GAC-3.

Table 1. Averaged values for Cpu times (t), and nodes (n) from 6 different problem
classes. Best cpu time is in bold.

Problem dom/wdeg H1 H2 H3 aged fully allDel
Class dom/wdeg assigned

RLFAP scensMod t 1,9 2 2,2 2,3 1,7 2,2 2,2
(13 instances) n 734 768 824 873 646 738 809

RLFAP graphMod t 9,1 5,2 6,1 5,5 12,9 13,4 11,1
(12 instances) n 6168 3448 4111 3295 8478 11108 9346

Driver t 22,4 7 7,8 11,6 6,4 18,8 20
(11 instances) n 10866 2986 3604 5829 1654 4746 4568
Interval Series t 34 19,4 23,4 13,3 6,5 66,4 17,4
(10 instances) n 32091 18751 23644 13334 5860 74310 26127
Golomb Ruler t 274,9 321,4 173,1 143,4 342,1 208,3 154,4
(6 instances) n 7728 10337 4480 3782 7863 6815 3841

geo50-20-d4-75 t 62,8 174,1 72,1 95 69 57,6 76
(10 instances) n 15087 36949 16970 23562 15031 12508 18094

frb30-15 t 37,3 35,1 45,8 57,2 42,3 32,9 26,1
(10 instances) n 20176 18672 24326 30027 21759 17717 14608

Table 1 show results from six different problem classes. The first two classes
are from the real world Radio Link Frequency Assignment Problem (RLFAP).
For the scensMod class we have run 13 instances and in this table we present
the averaged values for cpu time and nodes visited. Since these instances are
quite easy to be solved all the heuristics have almost the same behavior. The
aged version of the dom/wdeg heuristic has a slightly better performance. For
the graphMod class we have run 12 instances. Here the heuristics H1, H2, H3
that record the constraint which is responsible for each value deletion a better
performance. The third problem class is from another real world problem, which
is called Driver. In these 11 instances the aged dom/wdeg heuristic has on average
the best behavior. The next 10 instances are from the non-binary academic
problem “All Interval Series” (See prob007 at http://www.csplib.org) which have
maximum arity of 3. We must notice here that the aged dom/wdeg heuristic,
which has the best performance is five times faster compared with the dom/wdeg.

This good performance that the aged dom/wdeg heuristic has, is not generic
within different problem classes. This can be seen in the next academic problem
class (the well known Golomb Ruler problem) where the aged dom/wdeg heuris-
tic, have the worst performance. The last two classes are from the “geo”quasi-
random instances (random problems which contain some structure) and from
the “frb” pure random instances that are forced to be satisfied. Here, although
on average the fullyAssigned and allDel heuristics have the best performance,
within each class we observed a big variation in cpu time among all the tested
heuristics. A possible explanation for this diversity is the lack of structure that
random instances have.

Finally we must also comment that interestingly the dom/wdeg heuristic
does not achieve any win, in all the tested experiments. As a general comment



we can say that experimentally, all the proposed heuristics are competitive with
dom/wdeg and in many benchmarks a notable improvement is observed.

5 Conclusions

In this paper several new general purpose variable ordering heuristics are pro-
posed. These heuristics follow the learning-from-failure approach, in which infor-
mation regarding failures is stored in the form of constraint weights. By record-
ing constraints that are responsible for any value deletion, we derive three new
heuristics that use this information to spread constraint weights in a different
way compared to the heuristics of Boussemart et al. We also explore a SAT in-
spired constraint aging strategy that gives greater importance to recent conflicts.
Finally we proposed a new heuristic that tries to better identify contentious con-
straints by recording all the potential conflicts uppon detection of failure. The
proposed conflict driven variable ordering heuristics have been tested over a wide
range of benchmarks. Experimental results shows they are quite competitive to
the existing ones and is some cases they can increase efficiency.

References

1. C. Bessière and J.C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?). In Proceedings of the 2nd Conference on Principles and Practice
of Constraint Programming (CP-1996), pages 61–75, Cambridge MA, 1996.

2. F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the
Constraint Satisfaction Problem. In 10th International Conference on Princi-
ples and Practice of Constraint Programming (CP-2004), Workshop on Constraint
Propagation and Implementation, Toronto, Canada, 2004.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of 16th European Conference on Artificial
Intelligence (ECAI-2004), pages 146–150, Valencia, Spain, 2004.

4. H. Cambazard and N. Jussien. Identifying and Exploiting Problem Structures
Using Explanation-based Constraint Programming. Constraints, 11:295–313, 2006.

5. E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust Sat-Solver. In Proceed-
ings of DATE’02, pages 142–149, 2002.

6. D. Grimes and R.J. Wallace. Sampling strategies and variable selection in weighted
degree heuristics. In Proceedings of the 13th Conference on Principles and Practice
of Constraint Programming (CP-2007), pages 831–838, 2007.

7. M. Moskewicz, C. Madigan, and S. Malik. Chaff: Engineering an efficient sat solver.
In Proceedings of Design Automation Conference, pages 530–535, 2001.

8. P. Refalo. Impact-based search strategies for constraint programming. In Proceed-
ings of the 10th Conference on Principles and Practice of Constraint Programming
(CP-2004), pages 556–571, 2004.

9. D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint sat-
isfaction. In Proceedings 2nd Workshop on Principles and Practice of Constraint
Programming (CP-1994), pages 10–20, 1994.

10. R. Wallace and E. Freuder. Ordering heuristics for arc consistency algorithms. In
AI/GI/VI, pages 163–169, Vancouver, British Columbia, Canada, 1992.


