
Experimental evaluation of modern variable
selection strategies in Constraint Satisfaction

Problems

Thanasis Balafoutis1 and Kostas Stergiou1

Department of Information & Communication Systems Engineering
University of the Aegean

Samos, Greece
{abalafoutis,konsterg}@aegean.gr

Abstract
Constraint programming is a powerful technique for solving com-

binatorial search problems that draws on a wide range of methods
from artificial intelligence and computer science. Constraint solvers
search the solution space either systematically, as with backtracking
or branch and bound algorithms, or use forms of local search which
may be incomplete. Systematic methods typically interleave search
and inference. A key factor that can dramatically reduce the search
space is the criterion under which we decide which variable will be
the next to be instantiated. Numerous heuristics have been proposed
for this purpose in the literature. Recent years have seen the emer-
gence of new and powerful methods for choosing variables during CSP
search. Some of these methods exploit information about failures gath-
ered throughout search and recorded in the form of constraint weights,
while others measure the importance/impact of variable assignments
for reducing the search space. In this paper we experimentally evalu-
ate the most recent and powerful variable ordering heuristics, and new
variants of them, over a wide range of academic, random and real world
problems. Results demonstrate that heuristics based on failures are in
general faster. To be precise, heuristic dom/wdeg and its variants are
the dominant heuristics in most instances tried.

1 Introduction

Constraint programming is a powerful technique for solving combinatorial
search problems that draws on a wide range of methods from artificial intel-
ligence and computer science. The basic idea in constraint programming is
that the user states the constraints and a general purpose constraint solver
is used to solve them. Constraints are just relations and a constraint satis-
faction problem (CSP) states which relations hold among the given decision
variables.

CSPs can be solved either systematically, as with backtracking or branch
and bound algorithms, or using forms of local search which may be incom-
plete. When solving a CSP using backtracking search, a sequence of deci-
sions must be made as to which variable to instantiate next. These decisions

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

are referred to as the variable ordering decisions. It has been shown that for
many problems, the choice of variable ordering can have a dramatic effect
on the performance of the backtracking algorithm with huge variances even
on a single instance.

A variable ordering can be either static, where the ordering is fixed and
determined prior to search, or dynamic, where the ordering is determined
as the search progresses. Dynamic variable orderings have received much
attention in the literature. One common dynamic variable ordering (DVO)
strategy, known as “fail-first”, is to select as the next variable the one likely
to constrain the remainder of the search space the most. All other factors
being equal, the variable with the smallest number of viable values in its
(current) domain will have the fewest subtrees rooted at those values, and
therefore the smallest search space below it.

Recent years have seen the emergence of numerous modern heuristics for
choosing variables during CSP search. Most of them are quite successful and
the choice of best general purpose heuristic is not an easy procedure. All
these new heuristics, in their original papers, have been tested over a narrow
set of problems and they have been compared mainly with older heuristics.
Hence, there is no accurate view of the strengths and weaknesses of these
heuristics. The aim of this paper is to experimentally compare and evaluate
the efficiency of the modern variable ordering heuristics, and new variants
of them, over a wide range of academic, random and real world problems.

The rest of the paper is organized as follows. Section 2 gives the nec-
essary background material. In Section 3 we briefly overview the existing
variable ordering heuristics, while in Section 4 we give additional details on
the heuristics which we have selected for the evaluation. In Section 5 we
present experimental results from a wide variety of real, academic and ran-
dom problems. Finally, a general discussion and conclusions are presented
in Section 6.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C), where X is
a set containing n variables {x1, x2, ..., xn}; D is a set of domains {D(x1),
D(x2),..., D(xn)} for those variables, with each D(xi) consisting of the
possible values which xi may take; and C is a set of constraints {c1, c2, ..., ck}
between variables in subsets of X. Each ci ∈ C expresses a relation defining
which variable assignment combinations are allowed for the variables vars(ci)
in the scope of the constraint. Two variables are said to be neighbors if they
share a constraint. The arity of a constraint is the number of variables in
the scope of the constraint. The degree of a variable xi, denoted by Γ(xi),
is the number of constraints in which xi participates. A binary constraint
between variables xi and xj will be denoted by cij .

2

An arc (xi,xj) is arc consistent (AC) iff for every value a ∈ D(xi) there
exists at least one value b ∈ D(xj) such that the pair (a,b) satisfies cij . In this
case we say that b is a support of a on arc (xi,xj). Accordingly, a is a support
of b on arc (xj ,xi). A problem is AC iff there are no empty domains and all
arcs are AC. The application of AC on a problem results in the removal of
all non-supported values from the domains of the variables. The definition
of arc consistency for non binary constraints (also called generalized arc
consistency, or GAC) is a direct extension of the binary one [14, 13].

A support check (consistency check) is a test to find out if two values
support each other. The revision of an arc (xi,xj) using AC verifies if all
values in D(xi) have supports in D(xj). A DWO-revision is one that causes
a DWO. That is, it results in an empty domain.

A partial assignment is a set of tuple pairs, each tuple consisting of an
instantiated variable and the value that is assigned to it in the current search
state. A full assignment is one containing all n variables. A solution to a
CSP is a full assignment such that no constraint is violated.

3 Overview of existing variable ordering heuristics

The order in which variables are assigned by a backtracking search algorithm
has been understood for a long time to be of prime importance. The first
category of heuristics used for ordering variables was based on the initial
structure of the network. These are called static or fixed variable ordering
heuristics (SVOs) as they keep the same ordering of the variables during
search. Examples of such heuristics are lexico where variables are ordered
lexicographically, min width which chooses an ordering that minimizes the
width of the constraint network [9], min bandwidth which minimizes the
bandwidth of the constraint graph [20], and min degree (deg), where vari-
ables are ordered according to the initial size of their neighborhood [8].

A second category of heuristics includes dynamic variable ordering heuris-
tics (DVOs) which take into account information about the current state of
the problem at each point in search. The first well known dynamic heuris-
tic, introduced by Haralick and Elliott, was dom [12]. This heuristic chooses
the variable with the smallest remaining domain. The dynamic variation of
deg, called ddeg selects the variable with largest dynamic degree. That is,
the variable that is constrained with the largest number of unassigned vari-
ables. By combining dom and deg (or ddeg), the heuristics called dom/deg
and dom/ddeg [3, 19] were derived. These heuristics select the variable that
minimizes the ratio of current domain size to static degree (dynamic degree)
and can significantly improve the search performance.

When using variable ordering heuristics, it is a common phenomenon
that ties can occur. A tie is a situation where a number of variables are
considered equivalent by a heuristic. Especially at the beginning of search,

3

where it is more likely that the domains of the variables are of equal size,
ties are frequently noticed. A common tie breaker for the dom heuristic is
lexico, (dom+lexico composed heuristic) which selects among the variables
with smallest domain size the lexicographically first. Other known composed
heuristics are dom+deg [10], dom+ddeg [5, 18] and BZ3 [18].

Bessière et al. [2], have proposed a general formulation of DVOs which
integrates in the selection function a measure of the constrainedness of the
given variable. These heuristics (denoted as mDVO) take into account the
variable’s neighborhood and they can be considered as neighborhood gener-
alizations of the dom and dom/ddeg heuristics. For instance, the selection
function for variable Xi is described as follows:

H}
a (xi) =

∑
xj∈Γ(xi)

(α(xi) } α(xj))

|Γ(xi)|2
(1)

where α(xi) can be any simple syntactical property of the variable such
as |D(xi)| or |D(xi)|

|Γ(xi)| and } ∈ {+,×}. Neighborhood based heuristics have
shown to be quite promising.

Boussemart et al. [4] proposed conflict-directed variable ordering heuris-
tics. In these heuristics, every time a constraint causes a failure (i.e. a do-
main wipeout) during search, its weight is incremented by one. Each variable
has a weighted degree, which is the sum of the weights over all constraints
in which this variable participates. The weighted degree heuristic (wdeg)
selects the variable with the largest weighted degree. The current domain
of the variable can also be incorporated to give the domain-over-weighted-
degree heuristic (dom/wdeg) which selects the variable with minimum ratio
between current domain size and weighted degree. Both of these heuristics
(especially dom/wdeg) have been shown to be extremely effective on a wide
range of problems.

Grimes and Wallace [11] proposed alternative conflict-driven heuristics
that consider value deletions as the basic propagation events associated with
constraint weights. That is, the weight of a constraint is incremented each
time the constraint causes one or more value deletions. They also used
a sampling technique called random probing with which they can uncover
cases of global contention, i.e. contention that holds across the entire search
space.

Inspired from integer programming, Refalo introduced an impact mea-
sure with the aim of detecting choices which result in the strongest search
space reduction [16]. An impact is an estimation of the importance of a
value assignment for reducing the search space. He proposes to characterize
the impact of a decision by computing the Cartesian product of the domains
before and after the considered decision. The impacts of assignments for ev-
ery value can be approximated by the use of averaged values at the current
level of observation. If K is the index set of impacts observed so far for

4

assignment xi = α, I is the averaged impact:

I(xi = α) =

∑
k∈K

Ik(xi = α)

|K|
(2)

The impact of a variable xi can be computed by the following equation:

I(xi) =
∑

α∈D(xi)

1− I(xi = α) (3)

An interesting extension of the above heuristic is the use of “node im-
pacts” to break ties in a subset of variables that have equivalent impacts.
Node impacts are the accurate impact values which can be computed for
any variable by trying all possible assignments.

Correia and Barahona [7] propose variable orderings, by integrating Sin-
gleton Consistency propagation procedures with look-ahead heuristics. This
heuristic is similar to “node impacts”, but instead of computing the accurate
impacts, it computes the reduction in the search space after the application
of Restricted Singleton Consistency (RSC) [15], for every value of the cur-
rent variable. Although this heuristic was firstly introduced to break ties in
variables with current domain size equal to 2, it can also be used as a tie
breaker for any other variable ordering heuristic.

Cambazard and Jussien [6] go a step further by analyzing where the
reduction of the search space occurs and how past choices are involved in
this reduction. This is implemented through the use of explanations. An
explanation consists of a set of constraints C ′ (a subset of the set C of the
original constraints of the problem) and a set of decisions dc1, ..., dcn taken
during search. An explanation of the removal of value a from variable v can
be written as:

C ′ ∧ dc1 ∧ dc2 ∧ ... ∧ dcn ⇒ v 6= a

Finally, Balafoutis and Stergiou [1], propose new variants of conflict-
driven heuristics. These variants differ from wdeg in the way they assign
weights. They propose heuristics that record the constraint that is respon-
sible for any value deletion during search, heuristics that give greater im-
portance to recent conflicts, and finally heuristics that try to identify con-
tentious constraints by detecting all possible conflicts after a failure. The
last heuristic, called “fully assigned”, increases the weights of constraints
that are responsible for a DWO by one (as wdeg heuristic does) and also,
only for revision lists that lead to a DWO, increases by one the weights
of constraints that participate in fruitful revisions (revisions that delete at
least one value). Hence, this heuristic records all variables that delete at
least one value during constraint propagation and if a DWO is detected, it
increases the weight of all these variables by one.

5

4 Details on the evaluated heuristics

For the evaluation we have selected heuristics from 5 recent papers men-
tioned above. These are: i) dom/wdeg from Boussemart et al. [4], ii) the
random probing technique and “alldel by #del” heuristic where constraint
weights are increased by the size of the domain reduction (Grimes and Wal-
lace [11]), iii) Impacts and Node Impacts from Refalo [16], iv) the “RSC”
heuristic from Correia and Barahona [7] and finally v) the “fully assigned”
heuristic from Balafoutis and Stergiou [1].

We have also included in our experiments some combinations of the
above heuristics. For example, dom/wdeg can be combined with RSC (in
this case RSC is used only to break ties). Random probing can be applied
to any conflict-driven DVO, hence it can be used with the dom/wdeg and
“fully assigned” heuristics. Moreover, the impact heuristic can be combined
with RSC for breaking ties.

The full list of the heuristics that we have tried in our experiments in-
cludes 15 variations. These are the following: 1) dom/wdeg, 2) dom/wdeg
+ RSC (the second heuristic is used only for breaking ties), 3) dom/wdeg
with random probing, 4) dom/wdeg with random probing + RSC, 5) Im-
pacts, 6) Node Impacts, 7) Impacts + RSC, 8) alldel by #del, 9) alldel by
#del + RSC, 10) alldel by #del with random probing, 11) alldel by #del
with random probing + RSC, 12) fully assigned, 13) fully assigned + RSC,
14) fully assigned with random probing, and 15) fully assigned with random
probing + RSC. In all these variations the RSC heuristic is used only for
breaking ties.

5 Experiments and results

We now report results from the experimental evaluation of the selected
DVOs described above on several classes of problems. In Section 5.1 we
present results from the radio link frequency assignment problem (RLFAP).
In Section 5.2 we present results from structured problems. These instances
are taken from some academic (langford), real world (driver) and patterned
(graph coloring) problems. In Section 5.3 we consider instances from quasi-
random and random problems. The last experiments presented in Section
5.4 include Boolean instances. Finally in Section 5.5 we make a general
discussion where we summarize our results.

In the experiments we used MGAC (maintaining generalized arc con-
sistency) [17, 3] as our search algorithm. In MGAC a problem is made
generalized arc consistent after every assignment, i.e. all values which are
generalized arc inconsistent given that assignment, are removed from the
current domains of their variables. If during this process a domain wipeout
(DWO) occurs, then the last value selected is removed from the current do-

6

main of its variable and a new value is assigned to the variable. If no new
value exists then the algorithm backtracks.

All benchmarks are taken from C. Lecoutre’s web page1, where the reader
can find additional details on how the benchmarks are constructed. In our
experiments we included both satisfiable and unsatisfiable instances. Each
selected instance involves constraints defined either in intension or in exten-
sion (we have not included instances expressed with global constraints).

We have used two measures of performance for the DVOs tested: cpu
time in seconds (t) and number of visited nodes (n). The solver we used
applies d-way branching, and lexicographic value ordering. It also employs
restarts. Concerning the restart policy, the initial number of allowed back-
tracks for the first run has been set to 10 and at each new run the number
of allowed backtracks increases by a factor of 1.5.

In our experiments the random probing technique is run to a fixed cutoff
C = 40, and for a fixed number of restarts R = 50 (these are the optimal
values from [11]). Cpu time and nodes for random probing are averaged
values for 10 runs. For this heuristic, we have measured the total cpu time
and the total nodes visited (from both random probing initialization and
final search). However, in the next tables (except Table 1) we have also put in
parenthesis results from the final search only (random probing initialization
is excluded).

Concerning impacts, we have approximated their values at the initial-
ization phase by dividing the domains of the variables into (at maximum)
four sub-domains. In all the experiments, a time out limit has been set to 1
hour.

5.1 RLFAP instances

The Radio Link Frequency Assignment Problem (RLFAP) is the task of
assigning frequencies to a number of radio links so that a large number
of constraints are simultaneously satisfied and as few distinct frequencies
as possible are used. A number of modified RLFAP instances have been
produced from the original set of problems by removing some frequencies
(denoted by f followed by a value). For example, scen11-f8 corresponds to
the instance scen11 for which the 8 highest frequencies have been removed.

Results from Table 1 show that conflict-driven heuristics (dom/wdeg,
alldel and fully assigned) have the best performance. The Impact heuristic
seems to make a better exploration of the search tree on some easy instances
(like s2-f25, s11, s11-f12, s11-f11), but it is slower compared to conflict-driven
heuristics. This is mainly because the process of impact initialization is time
consuming. However, on hard instances, the Impact heuristic has worse
performance and in some cases it cannot solve the problem within the time

1http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/

7

limit. In general we observed that impact based heuristics cannot handle
efficiently problems which include variables with relatively large domains.
RLFA problems, for example, have 680 variables with maximum 44 values
in their domains.

Node Impact and its variation, “Impact RSC”, are strongly related, and
this similarity is depicted in the results. As mentioned in Section 3, Node
Impact computes the accurate impacts and “RSC” heuristic computes the
reduction in the search space, after the application of Restricted Singleton
Consistency. Since node impact computation also uses Restricted Singleton
Consistency (it subsumes it), these heuristics differ only in the measurement
function that assigns impacts to variables. Hence, when they are used to
break ties on the Impact heuristic, they usually make similar decisions.

When “RSC” is used as a tie breaker for conflict-driven heuristics, results
show that it does not offer significant changes in the performance. So we
have excluded it from the experiments that follow in the next sections, except
for the dom/wdeg + RSC combination.

Concerning “random probing”, although experiments in [11] show that
it has often better performance when compared to simple dom/wdeg, our
results show that this is not the case when dom/wdeg is combined with a
geometric restart strategy. Even on hard instances, where the computation
cost of random probes is smaller (compared to the total search cost) re-
sults show that dom/wdeg and its variations are dominant. Moreover, the
combination of “random probing” with any other conflict-driven variation
heuristic (“alldel” or “fully assigned”) does not offer significant changes.
Thus, for the next experiments we have kept only the “random probing”
and dom/wdeg combination.

Finally, among the three conflict-driven variations, in this set of bench-
marks, dom/wdeg seems to have a slightly better performance.

5.2 Structured instances

This set of experiments contains instances from academic problems (lang-
ford), some real world instances from the “driver” problem and 6 graph
coloring instances.

Since some of the variations presented in the previous paragraph (Ta-
ble 1) were shown to be less interesting, we have omitted their results from
the next tables.

Results in Table 2 show that the behavior of the selected heuristics is
close to the behavior that we observed in RLFA problems. Conflict-driven
variations are again dominant here. The dom/wdeg heuristic has in most
cases the best performance, followed by “alldel” and “fully assigned”.

Although random probing has in most experiments worse cpu times com-
pared to dom/wdeg, we have to notice that in the langford2-10 instance it
is faster. Impact based heuristics have by far the worst performance.

8

T
ab

le
1:

C
pu

ti
m

es
(t

),
an

d
no

de
s

(n
)

fr
om

fr
eq

ue
nc

y
al

lo
ca

ti
on

pr
ob

le
m

s.
B

es
t

cp
u

ti
m

e
is

in
bo

ld
.

T
he

s
an

d
g

pr
efi

xe
s

st
an

d
fo

r
sc

en
an

d
gr

ap
h

re
sp

ec
ti

ve
ly

.
d
/
w

d
eg

d
/
w

d
eg

d
/
w

d
eg

N
od

e
I
m

p
a
ct

a
ll
d
el

a
ll
d
el

a
ll
d
el

f
u
ll
y

f
u
ll
y

f
u
ll
y

In
st

a
n
ce

d
/
w

d
eg

r.
p
ro

be
R

S
C

r.
p
ro

be
I
m

p
a
ct

I
m

p
a
ct

R
S

C
a
ll
d
el

r.
p
ro

be
R

S
C

r.
p
ro

be
f
u
ll
y

r.
p
ro

be
R

S
C

r.
p
ro

be
R

S
C

R
S

C
R

S
C

s2
-f
2
5

t
7
,5

3
6
,6

1
1
,5

2
5
,7

9
,9

1
5

1
4
,9

9
,6

3
6
,1

1
1
,5

2
6
,1

1
1
,5

3
7
,2

1
1
,7

3
5
,8

(u
n
sa

t)
n

1
8
1
5

1
7
5
7
2

2
1
0
9

1
6
0
8
7

1
5
0
7

1
4
9
1

1
4
9
1

2
2
5
0

1
7
0
5
2

2
1
8
5

1
5
8
3
1

2
1
5
5

1
7
7
2
1

1
9
0
7

1
7
7
5
4

s3
-f
1
0

t
2

4
4
,4

1
8
,7

4
3
,5

1
3

3
2
,2

3
3
,2

1
,9

4
8
,8

9
,6

3
5
,5

1
,8

4
4
,1

1
4
,7

4
5
,5

(s
a
t)

n
6
1
0

1
8
5
2
0

6
9
7

1
5
8
6
1

1
2
9
2

1
2
5
2

1
2
5
2

6
4
5

1
7
9
9
0

6
8
3

1
6
5
7
2

5
4
4

1
8
6
0
5

4
5
8

1
8
6
5
3

s3
-f
1
1

t
7
,4

5
0
,6

9
,9

4
4
,3

>
1
h

>
1
h

>
1
h

1
6
,8

6
9
,8

1
6

4
9
,5

6
,7

5
8
,7

1
0
,2

6
2
,5

(u
n
sa

t)
n

9
6
9

1
9
1
4
9

9
7
7

1
7
0
4
3

-
-

-
2
2
1
5

2
0
6
5
6

2
1
9
0

1
8
7
8
4

7
7
4

2
0
4
8
8

1
0
9
8

2
0
5
1
1

g
8
-f
1
0

t
2
1
,9

7
1

5
3
,8

8
8
,5

>
1
h

>
1
h

>
1
h

2
2
,7

8
3
,5

3
0

6
9
,7

7
6
,3

9
1
,5

3
8
,2

7
8
,8

(s
a
t)

n
6
3
1
2

2
4
6
5
5

4
5
8
9

2
3
6
9
8

-
-

-
6
6
2
8

2
5
9
9
0

4
5
1
3

2
2
9
4
8

9
4
2
4

2
5
2
9
6

3
4
0
8

2
5
9
8
7

g
8
-f
1
1

t
4

7
5
,8

1
0
,9

6
7
,3

9
1
,4

1
0
0
,6

9
9
,8

2
,7

8
7
,1

1
,3

6
7
,7

1
7
6

1
,5

7
7
,1

(u
n
sa

t)
n

9
3
6

2
3
5
1
5

6
9
5

2
2
1
1
9

1
2
8
3
2

1
2
8
3
2

1
2
8
3
2

5
8
6

2
4
0
0
4

2
4
5

2
1
6
8
6

1
3
4

2
3
5
7
6

1
3
2

2
4
2
0
9

g
1
4
-f
2
7

t
2
2
,9

6
3
,9

1
5
1
,2

1
0
3
,1

1
8
9
,4

>
1
h

3
3
7
,6

3
0
,6

8
5
,5

7
7
,6

7
7
,7

5
8
,3

5
2
,5

1
0
3
,9

7
3
,2

(s
a
t)

n
1
4
1
0
3

3
0
3
3
4

1
6
9
8
6

2
2
3
0
9

3
4
8
6
2

-
2
7
9
2
7

1
8
6
3
5

3
9
6
5
3

3
4
8
4
9

4
2
9
1
9

2
6
5
8
2

2
6
1
4
9

1
4
6
2
6

3
8
5
7
3

g
1
4
-f
2
8

t
1
6
,8

4
8
,8

1
0
3
,4

4
5
,1

>
1
h

>
1
h

>
1
h

2
,3

2
7
4

3
7
,9

4
6
,8

1
7
,7

5
8
,4

3
2
,5

6
0
,9

(u
n
sa

t)
n

7
3
8
6

2
1
1
7
5

2
3
2
1
1

2
0
8
2
5

-
-

-
1
1
1
7

1
3
3
0
3
1

1
5
9
0
2

2
1
6
0
1

6
0
8
5

2
6
1
5
6

8
6
2
6

2
6
2
2
4

s1
1

t
4
,8

1
4
6

2
7
7
,7

2
0
2

2
9
,9

2
2
7
,8

2
3
5
,6

5
,8

1
4
3

1
1
6
,7

5
1
0
9
,6

5
,9

1
4
0
,4

2
7
2
,5

2
4
1

(s
a
t)

n
8
3
6

3
5
4
0
4

1
0
2
0

2
8
5
9
1

8
3
2

8
3
2

8
3
2

9
6
4

3
3
5
8
2

1
6
3
2

2
8
1
5
5

9
4
9

3
4
9
2
7

9
6
2

3
3
9
2
7

s1
1
-f
1
2

t
2
,9

7
5
,1

5
,7

5
8

2
3
,5

3
1
,1

2
6
,2

2
,9

8
0
,1

7
5
8
,9

3
,5

6
9
,5

4
,6

7
8
,5

(u
n
sa

t)
n

4
4
8

2
4
1
7
4

6
4
8

2
1
5
5
1

3
2
7

3
2
7

3
2
7

6
1
2

2
3
9
8
9

1
0
7
9

2
1
8
5
3

6
2
3

2
4
6
4
4

6
3
0

2
4
1
0
6

s1
1
-f
1
1

t
2
,8

7
2
,9

5
,6

5
8
,7

2
2
,9

3
1
,2

2
6
,3

2
,6

7
8
,9

1
1
,9

6
1
,2

3
,5

6
6
,5

4
,6

7
7
,2

(u
n
sa

t)
n

4
4
8

2
4
3
7
9

6
4
8

2
1
9
8
8

3
2
7

3
2
7

3
2
7

4
4
1

2
4
2
7
0

1
8
9
0

2
2
2
8
0

6
2
3

2
4
2
0
7

6
3
0

2
4
2
7
9

s1
1
-f
1
0

t
4
,3

6
8
,1

5
,4

6
0
,8

>
1
h

2
1
5
3
,7

1
8
8
7
,6

2
,8

8
6
,9

4
,4

6
0

4
,4

7
6
,6

6
,7

8
5
,5

(u
n
sa

t)
n

6
7
4

2
3
3
9
8

4
8
2

2
0
9
0
0

-
0
,2

M
0
,2

M
4
4
5

2
3
4
9
6

4
6
9

2
1
5
5
9

6
0
2

2
3
4
8
9

6
4
0

2
3
4
9
9

s1
1
-f
9

t
1
7
,2

8
5
,4

2
6
,2

7
8
,5

3
2
,4

4
9
,4

5
0

1
7
,6

9
5
,7

2
3

8
0
,1

1
4
,2

8
6
,7

2
6

9
8

(u
n
sa

t)
n

1
7
6
7

2
4
6
9
2

1
7
1
6

2
2
1
2
6

1
6
1
0

1
6
1
0

1
6
1
0

1
9
7
9

2
4
5
7
2

1
5
8
1

2
2
0
5
6

1
4
4
2

2
4
9
5
0

1
4
8
2

2
4
8
9
2

s1
1
-f
8

t
3
4
,5

1
0
7
,6

4
8
,7

1
0
1
,2

5
5
,1

8
0
,7

8
1
,7

2
6
,2

1
2
0

4
0
,4

9
6

2
5
,9

1
0
9
,8

3
6
,8

1
2
5
,9

(u
n
sa

t)
n

2
8
7
9

2
8
3
9
9

2
8
9
2

2
5
4
8
4

3
0
4
5

3
1
2
6

3
1
2
6

2
7
1
7

2
8
5
3
5

3
0
9
0

2
5
0
9
1

2
3
7
5

2
8
2
9
4

2
3
1
7

2
8
1
7
3

s1
1
-f
7

t
1
8
9
,3

2
7
2
,6

2
0
0
,3

2
4
5
,5

1
6
9
,8

2
5
0
,9

2
5
2
,3

1
3
7
,7

2
5
2

1
9
3
,7

2
5
7

1
3
8

2
1
7
,9

1
6
9
,5

2
6
2
,5

(u
n
sa

t)
n

2
6
1
3
9

5
3
0
3
4

2
2
3
4
1

4
9
4
8
4

1
4
5
3
6

1
9
7
1
5

1
9
7
1
5

1
7
9
3
7

4
5
2
4
7

2
2
4
6
2

4
8
0
7
8

1
6
5
9
9

4
4
6
6
9

1
5
6
0
5

4
5
0
1
2

s1
1
-f
6

t
2
9
1
,3

4
7
3
,5

5
5
5
,7

5
0
5
,7

>
1
h

2
2
1
6
,5

2
1
8
3
,4

4
2
1
,9

6
2
8

3
8
8
,1

4
0
8
,8

4
5
9
,5

4
4
1
,4

5
9
0
,1

6
4
4

(u
n
sa

t)
n

3
6
3
3
1

7
8
4
0
4

6
9
4
6
3

7
1
0
8
7

-
0
,2

M
0
,2

M
5
3
9
9
8

8
6
3
8
0

5
1
6
5
7

6
8
2
2
7

5
6
1
9
0

7
3
1
2
3

5
9
2
7
4

8
9
0
0
6

9

5.3 Random instances

In this set of experiments we have selected some quasi-random instances
which contain some structure (“ehi” and “geo” problems) and also some
purely random instances, generated following Model RB and Model D.

Model RB instances (frb30-15-1 and frb30-15-2), are random instances
forced to be satisfiable. Model D instances are described by four numbers
<n,d,e,t>. The first number n corresponds to the number of variables. The
second number d is the domain size and e is the number of constraints. t is
the tightness, which denotes the probability that a pair of values is allowed
by a relation.

Results are presented in Table 3. All the conflict-driven heuristics (dom
/wdeg, “alldel” and “fully assigned”) have very similar node visits and much
better cpu times compared to impact based heuristics. In pure random
problems the “alldel” heuristic has the best cpu times, while in quasi-random
instances the three conflict-driven heuristics share a win.

5.4 Boolean instances

This set of experiments contains instances involving only Boolean variables.
We have selected a representative subset from Dimacs problems. All the
selected instances have constraint arity equal to 3, except for the “jnhSat”
instances which have maximum arity of 14.

Results from these experiments can be found in Table 4. The behavior of
the evaluated heuristics in this data set is slightly different from the behavior
that we observed in previous problems. Although conflict-driven heuristics
again display here the best overall performance, impact based heuristics are
in some cases faster.

One of the main bottlenecks that impact based heuristics have, is the
time consuming initialization process. On binary instances, where the vari-
ables have binary domains, the cost for the initialization of impacts is small.
And this can significantly increase the performance of these heuristics.

We observed also that in ‘jnhSat” instances (which include constraints
with maximum arity of 14) the Impact heuristic is in all cases faster than
dom/wdeg. This result, have lead us to an empirical presumption that on
binary problems with high constraint arity, the Impact heuristic is quite
strong.

Among the conflict-driven heuristics, the “alldel” heuristic is always bet-
ter than its competitors. We recall here that in this heuristic, constraint
weights are increased by the size of the domain reduction. Hence, on binary
instances constraint weights can be increased at minimum by one and at
maximum by two (in each DWO). This way of incrementing weights seems
to work better on binary problems.

However, all these empirical remarks are quite preliminary and further

10

Table 2: Cpu times (t), and nodes (n) from structured problems. Best cpu
time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully
r.probe RSC Impact RSC by #del assigned

langford- t 51,7 54,8 (49,7) 59,4 73,4 85,2 83,2 54 54,5
2-9(unsat) n 71056 76395 (70820) 70767 83492 89727 91147 74041 74126

langford- t 446,3 429,1 (422,3) 464,7 486,6 528,5 543,6 431,2 433,4
2-10(unsat) n 494523 499595 (494060) 494685 480986 480975 485481 515053 512515

langford- t 634 754,4 (700,4) 639,9 2839 3178 2172,5 783,2 732,5
3-11(unsat) n 145687 155471 (148504) 148067 427142 445954 300355 165552 159894

langford- t 74,2 264 (59,9) 108 157 220,1 221,8 85,1 76,1
4-10(unsat) n 5640 13411 (3910) 5257 8834 9011 9001 6250 5703

driver- t 17,7 56,6 (0,8) 36,8 31,3 35,5 34,7 1,7 1,8
8c (sat) n 4613 9466 (411) 3556 426 424 424 669 638

driver-9 t 159,1 498,6 (388,9) 249,2 > 1h 593,4 2071 182,4 164,4
(sat) n 31067 73437 (61871) 19110 - 11232 64639 16136 16447

will199-5 t 1,6 22,8 (4,2) 4,6 36,8 42,5 264,8 2 2,4
(unsat) n 700 14076 (1786) 740 4267 4251 49619 741 730

will199-6 t 20,3 46,1 (20,2) 31,9 > 1h 42 42,1 15,5 15,4
(unsat) n 5941 22912 (5849) 5827 - 3982 3982 3986 3976

ash608-4 t 4,1 25,1 (2,9) 79,6 34,3 343,2 115,2 3 1,5
(sat) n 3168 21381 (2185) 2536 3342 4622 2329 2605 1269

ash958-4 t 15,2 45,3 (5,8) 289,7 110,8 650,2 497,5 13,5 14,8
(sat) n 8418 27618 (3050) 3926 6902 4578 4578 7462 7551

ash313-5 t 22,4 163,6 (23,5) 49,3 190,8 272 298,1 23,1 22,8
(unsat) n 723 10428 (723) 723 723 723 723 723 723

ash313-7 t 980 1157 (926) 1366 1192 1791 > 1h 1137 1217
(unsat) n 28789 43233 (27956) 28709 28710 28712 - 28725 28724

work must be done in this and other classes of non-binary problems in order
to achieve a better understanding of why these differentiations in perfor-
mance exist.

5.5 A general summary of the results

In order to get a summarized view of the evaluated heuristics, we present
two figures. In these figures we have computed averaged values for run-
time and node visits for the three major conflict-driven variants (dom/wdeg,
“alldell” and “fully assigned”) and we have compared them graphically to
the Impact heuristic (which has the best performance among the impact
based heuristics).

Results are collected in Figure 1. The left plot in this figure corresponds
to run times and the right plot to visited nodes. Each point in these plots,
shows the runtime (or nodes visited) for one instance from all the presented
benchmarks. The y-axis represent the solving time (or nodes visited) for the
Impact heuristic and the x-axis the averaged values for the conflict-driven
heuristics. Therefore, a point above line y = x represents an instance which
is solved faster (or with less node visits) using the conflict-driven heuristics.

11

Table 3: Cpu times (t), and nodes (n) from random problems. Best cpu
time is in bold. The r prefix stand for rand.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully
r.probe RSC Impact RSC by #del assigned

ehi-85-0 t 2,6 117,8 (0,18) 3,1 13,4 13,8 13,5 0,18 1,5
(unsat) n 742 7951 (6) 67 7 7 7 6 180

ehi-85-2 t 1.2 118,3 (0,15) 2,6 13,1 13,6 13,7 2,4 1,3
(unsat) n 258 7834 (7) 13 6 6 6 386 157

geo50-d4- t 206 581 (535) 288 > 1h > 1h > 1h 254 86,5
75-2(sat) n 29383 89437 (77187) 41201 - - - 38426 11119

frb30-15-1 t 20,2 49,3 (17,9) 19,4 774,3 775 257,7 12,8 50,6
(sat) n 5655 16966 (5401) 5341 365152 320598 98629 3853 14481

frb30-15-2 t 77,4 89,8 (56,7) 59,8 144,2 699 166 106,3 116,4
(sat) n 22630 29194 (17665) 17424 54326 251187 57379 32691 34305

40-8-753- t 225 202 (167) 82,7 1553 2112 689 414 118
0,1 (sat) n 52297 47655 (39839) 16344 447419 585708 189071 96018 26568

40-11-414- t 1198 1246 (1220) 1213 > 1h > 1h > 1h 1207 1202
0,2 (unsat) n 408589 420418 (410815) 410165 - - - 407006 402188

40-16-250- t 3027 3177 (3141) 3050 > 1h > 1h > 1h 2214 3083
0,35 (unsat) n 908917 923908 (911684) 910892 - - - 683167 916726

40-25-180- t 3056 2777 (2711) 1900 > 1h > 1h > 1h 1748 3454
0,5 (unsat) n 477096 488035 (470890) 342571 - - - 321811 610021

Figure 1: A summary view of run times (left figure) and nodes visited (right
figure), for conflict-driven and impact heuristics

12

Table 4: Cpu times (t), and nodes (n) from boolean problems. Best cpu
time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully
r.probe RSC Impact RSC by #del assigned

jnh01 t 10,5 111,8 (8) 14,8 2,3 13,8 13,8 4,3 6,4
(sat) n 966 5466 (667) 563 100 100 100 491 709

jnh17 t 3,2 59,9 (0,7) 18,5 2 10,8 10,7 1,5 1,5
(sat) n 477 4503 (107) 1233 132 131 131 216 204

jnh201 t 3,1 77,7 (2,2) 3,5 2,7 13,9 11,8 1,2 1,2
(sat) n 336 5492 (203) 168 177 180 180 179 178

jnh301 t 38,4 113,5 (107,2) 38,9 2,4 6,7 5,9 7,5 8,3
(sat) n 2703 5497 (203) 168 105 104 104 626 808

aim-50-1- t 0,18 0,44 (0,12) 0,25 0,29 0,31 0,25 0,09 0,09
6-unsat-2 n 1766 6517 (1716) 1243 1760 255 255 794 549

aim-100-1- t 0,4 1,3 (0,8) 1,6 6 2,7 4,9 0,18 0,23
6-unsat-1 n 3965 16067 (859) 8200 36586 1560 3392 1866 1431

aim-200-1- t 0,8 2,3 (1,4) 2 2,2 2 1,4 0,28 0,29
6-sat-1 n 5099 16809 (7953) 1456 8074 216 216 1901 1540

aim-200-1- t 2,1 3,7 (2,8) 9 12 5,4 9 0,21 0,23
6-unsat-1 n 14453 29670 (19565) 27654 32643 1966 3819 1388 1248

pret-60- t 1517 1501,8 (1501,7) > 1h 1736 > 1h > 1h 1197 1325
25 (unsat) n 48,1M 48,3M (48,3) - 24,7M - - 45,2M 46,6M

dubois-20 t 1424 1498,3 (1498,2) - 4013 > 1h > 1h 1209 1981
(unsat) n 48,4M 48,4M (48,4M) - 29,6M - - 43M 47M

Both axes are logarithmic.
As we can clearly see from Figure 1 (left plot), conflict-driven heuris-

tics are almost always faster. Concerning node visits, the right plot does
not reflect an identical performance. Although it seems that in most cases
conflict-driven heuristics are making a better exploration in the search tree,
these exists a considerable set of instances where the Impact heuristic visit
less nodes.

6 Conclusions

In this paper we experimentally evaluate the most recent and powerful vari-
able ordering heuristics, and new variants of them, over a wide range of
academic, random and real world problems. These heuristics can be divided
in two main categories: heuristics that exploit information about failures
gathered throughout search and recorded in the form of constraint weights
and heuristics that measure the importance/impact of variable assignments
for reducing the search space. Results demonstrate that, in general, heuris-
tics based on failures have much better cpu performance. Although impact
based heuristics are in general slow, there are some cases where they perform
a smarter exploration of the search tree resulting in fewer node visits.

This paper is only a preliminary step towards evaluating and (crucially)

13

understanding the behavior of modern variable ordering heuristics. As re-
sults presented here demonstrated, both major strategies for variable se-
lection, conflicts and impacts, have strengths and weaknesses. We believe
that the development of hybrid techniques that exploit the strengths of both
strategies should be a important topic for future research.

References

[1] T. Balafoutis and K. Stergiou. On conflict-driven variable ordering
heuristucs. In Proceedings of the ERCIM workshop - CSCLP, 2008.

[2] C. Bessière, A. Chmeiss, and L. Sais. Neighborhood-based variable
ordering heuristics for the contraint satisfaction problem. In Proceedings
of CP’01, pages 61–75, 2001.

[3] C. Bessière and J.C. Régin. MAC and combined heuristics: two reasons
to forsake FC (and CBJ?). In Proceedings of CP-1996, pages 61–75,
Cambridge MA, 1996.

[4] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting system-
atic search by weighting constraints. In Proceedings of 16th European
Conference on Artificial Intelligence (ECAI ’04), Valencia, Spain, 2004.

[5] D. Brelaz. New methods to color the vertices of a graph. Communica-
tions of the ACM, 22:251–256, 1979.

[6] H. Cambazard and N. Jussien. Identifying and Exploiting Problem
Structures Using Explanation-based Constraint Programming. Con-
straints, 11:295–313, 2006.

[7] M. Correia and P. Barahona. On the integration of singleton consistency
and look-ahead heuristics. In Proceedings of the ERCIM workshop -
CSCLP, 2007.

[8] R. Dechter and I. Meiri. Experimental evaluation of preprocessing tech-
niques in constraint satisfaction problems. In Proceedings of IJCAI’89,
pages 271–277, 1989.

[9] E.C. Freuder. A sufficient condition for backtrack-free search. Journal
of the ACM, 29(1):24–32, 1982.

[10] D. Frost and R. Dechter. Look-ahead value ordering for constraint
satisfaction problems. In Proceedings of IJCAI’95, pages 572–578, 1995.

[11] D. Grimes and R.J. Wallace. Sampling strategies and variable selection
in weighted degree heuristics. In Proceedings of CP 2007, pages 831–
838, 2007.

14

[12] R.M. Haralick and Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263–314, 1980.

[13] A. Mackworth. On reading sketch maps. In Proceedings of IJCAI’77,
pages 598–606, Cambridge MA, 1977.

[14] R. Mohr and T.C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[15] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In
Proceedings of CP’00, pages 353–368, 2000.

[16] P. Refalo. Impact-based search strategies for constraint programming.
In Proceedings of CP 2004, pages 556–571, 2004.

[17] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Proceedings of CP ’94, pages 10–20, 1994.

[18] B.M. Smith. The brelaz heuristic and optimal static orderings. In
Proceedings of CP’99, pages 405–418, 1999.

[19] B.M. Smith and S.A. Grant. Trying harder to fail first. In Proceedings
of ECAI’98, pages 249–253, 1998.

[20] R. Zabih. Some applications of graph bandwith to constraint satisfac-
tion problems. In Proceedings of AAAI’90, pages 46–51, 1990.

15

