
Adaptive Branching for Constraint Satisfaction
Problems

Thanasis Balafoutis and Kostas Stergiou1

Abstract.
The two standard branching schemes for CSPs are d-way

and 2-way branching. Although it has been shown that in
theory the latter can be exponentially more effective than
the former, there is a lack of empirical evidence showing such
differences. To investigate this, we initially make an experi-
mental comparison of the two branching schemes over a wide
range of benchmarks. Experimental results verify the theo-
retical gap between d-way and 2-way branching as we move
from a simple variable ordering heuristic like dom to more
sophisticated ones like dom/ddeg. However, perhaps surpris-
ingly, experiments also show that when state-of-the-art vari-
able ordering heuristics like dom/wdeg are used then d-way
can be clearly more efficient than 2-way branching in many
cases. Motivated by this observation, we develop two generic
heuristics that can be applied at certain points during search
to decide whether 2-way branching or a restricted version
of 2-way branching, which is close to d-way branching, will
be followed. The application of these heuristics results in an
adaptive branching scheme. Experiments with instantiations
of the two generic heuristics confirm that search with adaptive
branching outperforms search with a fixed branching scheme
on a wide range of problems.

1 INTRODUCTION

Most complete algorithms for CSPs are based on exhaus-
tive backtracking search interleaved with constraint propaga-
tion. Search is typically guided by variable and value ordering
heuristics and makes use of either a “d-way” or a “2-way”
branching scheme. In the former case, after a variable x with
domain {a1, . . . , ad} is chosen, d branches are built, each one
corresponding to one of the d possible value assignments of x.
In the latter case, after a variable x is chosen, its values are
assigned through a sequence of binary choices. The first choice
point creates two branches, corresponding to the assignment
of a1 to x (left branch) and the removal of a1 from the domain
of x (right branch). 2-way branching was described by Freuder
and Sabin within the MAC algorithm [8] and in theory it can
achieve exponential savings in search effort compared to d-
way branching [5]. Indeed, 2-way is the standard branching
scheme of most constraint solvers.

Despite the theoretical result of [5], the few experimental
studies comparing 2-way and d-way branching have not dis-

1 Department of Information & Communication Systems
Engineering University of the Aegean, Greece, email:
{abalafoutis,konsterg}@aegean.gr

played significant differences between them. Park showed that
2-way and d-way display very similar performance when the
smallest domain variable ordering heuristic (VOH) is used [6],
while Smith and Sturdy showed that 2-way outperforms d-way
when searching for all solutions, albeit not considerably (an
average speed-up of 30% was reported) [9]. The reason for
this “discrepancy” between theory and experiments is that
the experimental studies have considered a “restricted” form
of 2-way branching where the variable branched on after the
successful propagation of a value removal is always the cur-
rent variable. This is also the default branching scheme of
most constraint solvers. Importantly, “full” 2-way branching
as described in [8], allows for a different variable to be chosen.

In this paper we first make a detailed experimental com-
parison between 2-way branching, in both its restricted and
full versions, and d-way branching, under a variety of dif-
ferent VOHs. Results show that the d-way and restricted 2-
way branching schemes are closely matched across the dif-
ferent VOHs, with d-way being slightly more cost effective.
However, confirming the theoretical results, exponential dif-
ferences in favor of full 2-way branching are observed as soon
as we move from a simple heuristic like smallest domain (dom)
to more sophisticated ones like domain over dynamic de-
gree (dom/ddeg). Perhaps surprisingly, when state-of-the-art
conflict-driven heuristics, like dom/wdeg, are used, significant
differences in favor of d-way (and restricted 2-way) are also
observed. This is because in some cases the VOH mistakenly
chooses to branch on a variable other than the current one
after the successful propagation of a value removal. This can
divert search away from a hard part of the search space, re-
sulting in increased search effort.

Motivated by this observation, we develop two generic
heuristics that can be applied at successful right branches
once the VOH chooses to branch on a variable other than the
current one. At this point the heuristics are used to decide
whether the advice of the VOH will be followed or not. The
application of these heuristics results in an adaptive branching
scheme that dynamically switches between 2-way branching
and its restricted version (which is close to d-way branch-
ing). Both of our heuristics can be used in tandem with any
backtracking search algorithm and VOH. The first heuristic is
based on measuring the difference between the scores that the
VOH assigns to its selected variable and the current variable.
The VOH is followed only if the difference is sufficiently large.
As a downside, this heuristic requires some tuning to optimize
its performance. The second heuristic is based on the use of a
secondary advisor to decide if the VOH will be followed, and

it does not require any tuning.
Experiments with instantiations of the two generic heuris-

tics confirm that search with adaptive branching outperforms
search with a fixed branching scheme on a wide range of prob-
lems. Interestingly, in many cases the gains offered by full
2-way branching are also obtained by the adaptive branch-
ing methods with only very few decisions following the VOH
when it suggests to move away from the current variable at
successful right branches.

The rest of the paper is organized as follows. Section 2 gives
necessary background. In Section 3 we compare the three
branching schemes detailed above on a variety of CSP in-
stances. Section 4 presents the proposed heuristics for adap-
tive branching. In Section 5 we demonstrate the efficacy of the
heuristics through an experimental study. Finally, in Section 6
we conclude.

2 BACKGROUND

A Constraint Satisfaction Problem (CSP) is a tuple (X, D,
C), where X is a set containing n variables {x1, x2, ..., xn};
D is a set of domains {D(x1), D(x2),..., D(xn)} for those
variables, with each D(xi) consisting of the possible values
which xi may take; and C is a set of constraints between
variables in subsets of X. Each constraint ci ∈ C expresses a
relation defining which variable assignment combinations are
allowed for the variables in the scope of the constraint.The
degree of a variable x is the number of constraints involving
x, and the dynamic degree of (an unassigned variable) x is
the number of constraints involving x and at least one other
unassigned variable.

Complete search algorithms for CSPs are typically based
on backtracking depth-first search where branching decisions
(e.g. variable assignments) are interleaved with constraint
propagation. Search is guided by variable ordering heuristics
(VOHs) and value ordering heuristics. The classic VOH small-
est domain (dom) selects the variable with minimum domain
size [4]. Other, more sophisticated, heuristics include dom/deg
and dom/ddeg [1], which select the variable with minimum ra-
tio of domain size over degree (resp. dynamic degree).

One of the most efficient general purpose VOHs that have
been proposed is dom/wdeg [2]. This heuristic assigns a weight
to each constraint, initially set to one. Each time a constraint
causes a conflict, i.e. a domain wipeout (DWO), its weight
is incremented by one. Each variable is associated with a
weighted degree, which is the sum of the weights over all con-
straints involving the variable and at least another unassigned
variable. The dom/wdeg heuristic chooses the variable with
minimum ratio of current domain size to weighted degree.
This heuristic is among the most efficient, if not the most ef-
ficient, general-purpose heuristics for CSPs. Grimes and Wal-
lace proposed alternative conflict-driven heuristics that con-
sider value deletions as the basic conflicts associated with con-
straint weights [3]. The alldel heuristic increments the weight
of a constraint each time it causes one or more value dele-
tions from a domain. The efficacy of all the proposed conflict-
directed heuristics is due to their ability to learn though con-
flicts (either DWOs or value deletions) encountered during
search. As a result they can guide search towards hard parts
of the problem earlier.

A CSP search algorithm is usually implemented using either

a d-way or a 2-way branching scheme2. The former works as
follows. After a variable x with domain D(x) = {a1, a2, ..., ad}
is selected, d branches are created, each one corresponding to a
value assignment of x. In the first branch, value a1 is assigned
to x and constraint propagation is triggered. If this branch
fails, a1 is removed from D(x). Then the assignment of a2

to x is made (second branch), and so on. If all d branches
fail then the algorithm backtracks. An example of a search
tree explored with d-way branching is shown in Figure 1a. In
2-way branching, after a variable x and a value ai ∈ D(x)
are selected, two branches are created. In the left branch ai is
assigned to x, or in other words the constraint x=ai is added
to the problem and is propagated. In the right branch the
constraint x ̸= ai is added to the problem and is propagated.
If both branches fail then the algorithm backtracks. Figure 1b
shows a search tree explored with 2-way branching.

There are two differences between these branching schemes:

• In 2-way branching, if the branch assigning a value ai to
a variable x fails then the removal of ai from D(x) is im-
mediately propagated. Instead, d-way branching tries the
next available value aj of D(x). Note that the propagation
of aj subsumes the propagation of ai’s removal.

• In 2-way branching, after a failed branch corresponding to
an assignment x=ai, and assuming the removal of ai from
D(x) is then propagated successfully, the algorithm can
choose to branch on any variable (not necessarily x), ac-
cording to the VOH (e.g. Figure 1b). In d-way branching
the algorithm has to choose the next available value for
variable x after x=ai fails.

x=a1
 x=a2
 x=a3

y=a1
 y=a2
 y=a3
 y=a1
 y=a2
 y=a3
 y=a1
 y=a2
 y=a3

x=a1
 x<>
a1

y=a1
 y
<>
a1
 x
=a2
 x
<>
a
2

x=a1
 x<>
a1

y=a1
 y
<>
a1
 y
=a
1
 y
<>
a
1

a)
 d
-way branching

c
) restricted 2-way branching
b
) 2-way branching

Figure 1. Examples of search trees for the three branching
schemes.

In between these two schemes is the version of 2-way
branching used in [9] where the algorithm is forced to as-
sign x with its next value after the successful propagation of
ai’s removal from D(x). In the following we call this restricted
2-way branching. Figure 1c shows a search tree explored with
restricted 2-way branching.

3 COMPARISON OF BRANCHING
SCHEMES

The search algorithm used in all the experiments presented
hereafter is the commonly used maintaining (generalized) arc

2 Domain splitting is also used, but it is not considered here.

consistency (MAC) algorithm [7, 1]. We have experimented
with four VOHs: dom, dom/ddeg, dom/wdeg, and dom/alldel.
Benchmarks are taken from the web page of C. Lecoutre,
where details about them can be found. The following classes
of binary and non-binary problems have been used: radio
links frequency assignment (RLFAP), driver, ehi, geom, graph
coloring, quasigroup completion, chessboard coloration, all-
interval series, golomb ruler and random instances from the
RB model (forced to be satisfiable).

Results from the use of dom with the three branching
schemes showed that under this heuristic 2-way branching es-
sentially emulates d-way branching and the three branching
schemes are closely matched in terms of run times (with d-
way being slightly better). This is in accordance with previous
results [6].

Table 1. CPU times (t) in secs. and nodes (n) for the three
branching schemes using the VOH dom/ddeg.

Instance 2 − way restricted d − way
2 − way

scen-11 t 7.1 508 372
(sat) n 1379 68597 45862

scen-11-f11 t 8.1 > 1h > 1h
(unsat) n 2716 - -

driverlogw-09 t 205 1197 1207
(sat) n 75033 0.42M 0.16M

ehi-85-297-0 t 62.3 2509 2481
(unsat) n 37246 2.5M 0.9M

ehi-85-297-2 t 41.8 > 1h > 1h
(unsat) n 20733 - -

ash958GPIA-4 t 5.1 > 1h > 1h
(sat) n 2712 - -

cc-12-12-2 t 58.3 978 959
(unsat) n 36994 0.56M 0.27M

In Table 1 we give indicative results from the use of the
dom/ddeg heuristic. We display CPU times as well as nodes.
A node in 2-way branching can be a value assignment or
a value removal, while in d-way branching it can only be a
value assignment. Hence, they cannot be compared directly.
However, nodes give an accurate measure of the difference in
search effort between 2-way and restricted 2-way. Our exper-
iments confirm the theoretical results of [5] as we can observe
huge differences in favor of 2-way branching. Restricted 2-way
and d-way display similar performance.

Table 2 compares the three branching schemes when us-
ing the conflict-driven VOH dom/wdeg. As this heuristic can
learn from failures (DWOs) encountered during search, and
thus make more informed choices, it significantly outperforms
dom/ddeg [2]. Comparing these results with the results of Ta-
ble 1, we can notice two differences: First, there are instances
where 2-way branching is less efficient, sometimes consider-
ably, compared to restricted 2-way and d-way. Second, in in-
stances where 2-way branching dominates, the differences are
not as striking as in Table 1, albeit they can still be consider-
able. Quantitatively similar results were observed when using
the conflict-driven VOH dom/alldel.

In the first part of Table 2 we group representative instances
where 2-way branching is the best choice, while in the second
part we show results where restricted 2-way and d-way are
better. Neither 2-way nor d-way (and restricted 2-way) is the
best choice, even for instances within the same problem class
(see for example the ruler25 and frb35-17 problems in Ta-
ble 2). As in the case of dom/ddeg, restricted 2-way branching

Table 2. CPU times (t) in secs. and nodes (n) for the three
branching schemes using the VOH dom/wdeg.

Instance 2 − way restricted d − way
2 − way

series-12 t 27.3 145.7 158.5
(sat) n 33876 245787 246379

series-13 t 148.4 1132 1057
(sat) n 150145 1.6M 1.3M

scen11 t 12.6 45.1 34.2
(sat) n 2414 6002 4398

scen2-f25 t 42.3 183.8 137.9
(unsat) n 9539 38185 50609

graph9-f9 t 178.6 640.5 923
(unsat) n 66367 255204 406361

ruler-25-8-a3 t 50.3 180.8 167.6
(unsat) n 1829 6407 7026

frb35-17-1 t 34.2 135 114
(sat) n 11129 54026 40165

geo50-20-d4-75-1 t 2298 1242 1128
(sat) n 558754 279998 257225

geo50-20-d4-75-2 t 122 28,5 28.3
(sat) n 48943 9153 9509

haystacks-05 t 41.7 3.9 3.7
(unsat) n 1.78M 0.18M 0.16M

qcp-15-120-5 t 529 408 402
(sat) n 0.76M 0.63M 0.25M

abb313GPIA-7 t 498 313 309
(unsat) n 28388 17238 11161

ruler-25-7-a3 t 12.4 4.1 2.1
(sat) n 1444 255 129

frb35-17-2 t 337 227 194
(sat) n 0.13M 0.1M 78938

displays a behavior very close to that of d-way branching.
A likely explanation for the failure of 2-way branching on

some instances, compared to its restricted version, is the fol-
lowing. At some right branches during search, the VOH mis-
takenly chooses to branch on a variable other than the cur-
rent one. In the case of conflict-driven VOHs, this may re-
sult in the search process moving away from a hard subprob-
lem to another area of the search space resulting in increased
search effort. To test this conjecture we have developed heuris-
tics, presented below, that can be applied at successful right
branches to decide whether the advice of the VOH will be fol-
lowed or not. The use of such heuristics results in an adaptive
branching scheme that dynamically switches between 2-way
branching and its restricted version.

Finally, a conclusion that can be drawn from this experi-
mental study is that the performance of different branching
schemes strongly depends on the VOH used.

4 HEURISTICS FOR ADAPTIVE
BRANCHING

We now present two generic heuristics that can be used to
dynamically adapt the search algorithm’s branching scheme.
We only consider the case where dynamic adaptation in-
volves switching between 2-way branching and restricted 2-
way branching. As detailed above, the performance of d-way
branching is very close to that of restricted 2-way branching.
The intuition behind the heuristics is twofold. First, to avoid
branching on a different variable if the VOH is not “confident
enough” about the correctness of this decision. And second, to
identify ways to assist this decision by the use of secondary
advisors. That is, VOHs that can complementarily be con-
sulted to help in the decision making.

These heuristics can be applied at successful right branches.
That is, when the VOH suggests to branch on another variable
rather that trying the next value of the current one. Following
the above intuitions we propose two generic heuristics:

Hsdiff (e) :- VOH score difference If the current vari-
able is x and the VOH suggests to branch on a differ-
ent variable y, we will follow this suggestion only when
|score(y) − score(x)| > e, where score(x) and score(y) are
the values assigned by the VOH to variables x and y, while e
is a threshold value difference.

Hcadv(VOH2) : - complementary advisor If the current
variable is x and the VOH used by the algorithm (V OH1) sug-
gests to branch on a different variable y, we will follow this
suggestion only when a secondary VOH (V OH2) also prefers
y to x. That is, when scoreV OH2(y) > scoreV OH2(x), where
scoreV OH2(x) and scoreV OH2(y) are the heuristic values as-
signed by V OH2 to variables x and y3.

Both proposed heuristics are generic, in the sense that they
can be used in tandem with any VOH and any backtracking
search algorithm. However, Hsdiff (e) requires some tuning to
set the value of e appropriately. In contrast, Hcadv(V OH2)
does not require any such tuning, and can use any VOH as a
secondary heuristic. The two heuristics can also be combined
either conjunctively or disjunctively. In the former (resp. lat-
ter) case, the suggestion to branch on a variable different than
x is followed when both (resp. at least one) of the criterions
for Hsdiff and Hcadv are satisfied. Importantly, the two pro-
posed heuristics are lightweight, assuming that V OH2 is not
too expensive to compute.

5 EXPERIMENTS

In this section we evaluate the performance of the two heuris-
tics on a variety of CSP instances. Before presenting the re-
sults, we discuss the tuning of heuristic Hsdiff (e).

5.1 Tuning Heuristic Hsdiff (e)

Although heuristic Hsdiff (e) is generic and can be used to-
gether with any VOH, the optimum threshold value e obvi-
ously varies among different VOHs as they may consider dif-
ferent metrics, such as domain sizes, constraint degrees, con-
straint weights, etc. Even with a fixed VOH and within a spe-
cific problem class, the optimum threshold value e may differ
from instance to instance, and therefore locating it is not par-
ticularly interesting from a practical point of view. However,
our experiments have demonstrated that a “good enough”
value for e that carries across different problem classes can be
located for a given VOH with only a few experiments.

To find a good value for e we proceeded as follows. Taking a
single instance from some problem class we repeatedly solved
it using the Hsdiff (e) heuristic for branching, starting with e
set to 0 and gradually increasing e in every repetition. Setting
e = 0 forces Hsdiff (e) to emulate 2-way branching, while as e
increases, Hsdiff (e) moves closer to restricted 2-way branch-
ing. For each run we measured the number of times when,
after a failed assignment x = ai and the successful propaga-
tion of x ̸= ai, the VOH chose to branch on a variable y other
than x. In the following we will call this measure variable

3 We assume that a greater score is better according to V OH2.

changes (vc). By definition, such a situation does not occur
with restricted 2-way branching, hence with this branching
scheme vc is always 0.

Specifically for dom/wdeg, the value of e was increased in
steps of 0.01. Figures 2b, c and d show the number of nodes (y-
axis) as a relation of e (x-axis) for instances scen11, series12
and haystacks-05 respectively. The first data point in these
plots (where e = 0) essentially gives the number of nodes for
2-way branching. The experiment was stopped when for some
value of e the observed value of vc was 0. The last data point
in each plot, corresponding to this situation, essentially gives
the number of nodes for restricted 2-way branching.

(a) (b)

(c) (d)

Figure 2. (a) variable changes and (b) nodes over increasing
values of e for the scen11 RLFAP. (c), (d) nodes for the series12

(c) and haystacks-05 (d) instances.

In Figures 2b and c (scen11 and series12), where 2-way
branching is better than its restricted version, we can notice
that as e increases there is point where a sharp decline in the
performance of Hsdiff (e) occurs. Respectively, in Figure 2d
(haystacks-05) where restricted 2-way is better, we can no-
tice that as e increases there is point where a sharp improve-
ment in the performance occurs. After running similar exper-
iments with benchmark instances from other problem classes,
we observed that setting e to values around 0.1, when us-
ing dom/wdeg for variable ordering, gives good results across
many different instances and problem classes. For heuristic
dom/alldel this value was 0.001.

Finally, Figure 2a gives the recorded value of vc (y-axis)
as a relation of e (x-axis) for the RLFAP instance scen11.
Not surprisingly, as the value of e increases, the value of vc
decreases. Interestingly, there is a sharp (exponential) decline
in the value of vc roughly around the point where e = 0.1. A
similar phenomenon was observed in all the tested instances.

Table 3. CPU times (t) in secs. and nodes (n) and variable changes (vc) for 2-way and the adaptive branching schemes using the
dom/wdeg VOH.

Instance 2 − way restricted Hsdiff Hcadv H∧ H∨

2 − way (0.1) (wdeg)

series-12 t 27.3 145.7 21 10.4 22.1 15.6
(sat) n 33876 0.24M 25730 13584 27721 17434

vc 531 0 4 78 2 127

series-13 t 148.4 1132 98.3 150.6 70.6 59.1
(sat) n 0.15M 1.6M 96248 0.15M 71570 64670

vc 2492 0 9 1163 6 358

scen11 t 12.6 45.1 14 13 14 13
(sat) n 2414 6002 2197 2456 2197 2023

vc 31 0 8 31 8 31

scen2-f25 t 42.3 183.8 45 41.2 45 41.2
(unsat) n 9539 38185 9952 9561 9952 9561

vc 719 0 69 484 69 484

graph9-f9 t 178.6 640.5 190 186.2 194.4 182
(unsat) n 66367 0.25M 69699 67585 70748 66802

vc 873 0 74 698 68 700

ruler-25-8-a3 t 50.3 180.8 139.5 54.6 139.5 54.6
(unsat) n 1829 6407 5022 1905 5022 1905

vc 281 0 1 159 1 159

frb35-17-1 t 34.2 135 69.4 41.8 66.4 41.8
(sat) n 11129 54026 25003 15163 25003 15163

vc 63 0 5 43 5 43

5.2 Experimental Evaluation

We have experimented with 400 instances from the problem
classes detailed in Section 3. We compared the performance
of the fixed branching schemes 2-way and restricted 2-way to
the performance of the following adaptive branching schemes:
Hsdiff (0.1), Hcadv(wdeg), and their conjunctive and disjunc-
tive combinations H∧ and H∨. The value of the threshold
e for Hsdiff was set to 0.1 after a few preliminary experi-
ments as explained above, while the secondary heuristic used
by Hcadv was wdeg. The VOH used was dom/wdeg.

In 51% of the tried instances all methods were very close.
In 24% 2-way was faster than restricted 2-way, while in 25%
it was slower. The last two cases included most of the hardest
instances. Tables 3 and 4 give some results from the last two
cases indicating the gaps in performance between 2-way and
restricted 2-way and the fact that the adaptive heuristics typ-
ically follow the winner between the two branching schemes.
For each instance and branching scheme we report CPU time,
nodes, and the observed value of vc.

Table 3 includes instances where 2-way is better than re-
stricted 2-way, while Table 4 includes instances where re-
stricted 2-way is better than 2-way. The adaptive branching
schemes are, in most cases, close to or even slightly supe-
rior to 2-way branching in Table 3, while a similar observa-
tion can be made with respect to restricted 2-way branching
for Table 4. Respectively, the adaptive branching schemes are
clearly superior to restricted 2-way in the Table 3, and to 2-
way in Table 4. Generally, we can notice that although the
adaptive branching schemes do not always achieve the best
performance, they obtain a good trade-off between the per-
formance of 2-way and restricted 2-way branching. Addition-
ally, in many instances the adaptive branching schemes are
superior to both 2-way and restricted 2-way (e.g. series-12
and frb35-17-2). Note that the tables include instances where
one or both of the adaptive methods performed substantially
worse than the winner among the standard branching schemes
(e.g. ruler-25-8-a3 and haystacks-05).

Comparing the heuristics, Hsdiff and H∧ are more efficient
and robust than Hcadv and H∨. However, we have not exper-
imented extensively with secondary advisors for Hcadv so far.

The one used in the experiments (wdeg) is obviously closely
related to the primary VOH (dom/wdeg). Trying a more di-
verse secondary advisor, i.e. a heuristic that utilizes different
type of information, may yield better results. Note that using
dom as the secondary advisor is clearly inferior compared to
wdeg (results are omitted due to lack of space). This is not
surprising if we consider that wdeg is a much more effective
VOH compared to dom.

Taking a closer look at the results presented in Table 3 it
is interesting to notice the behavior of the branching schemes
on the first instance series12. Here, restricted 2-way is clearly
inefficient compared to 2-way. The latter branches on a vari-
able different than the current one after a right branch 531
times throughout search (i.e. vc = 531). On the other hand,
Hsdiff and H∧ manage to outperform 2-way branching by
only branching on 4 (resp. 2) different variables after right
branches. Restricted 2-way branching is outperformed by a
factor of 7, by only making 4 (resp. 2) decisions against the
VOH. Similar behavior can be observed in most instances of
Table 3. Even more so in Table 4 where restricted 2-way is
better that 2-way, Hsdiff and H∧ follow the VOH very few
times when it chooses to branch on a variable other than the
current one.

These results suggest that heuristic Hsdiff in particular is
able to “block” variable changes that have a degrading effect
on the search effort. Heuristic Hcadv also achieves this, but to
a lesser extent, as is evident by the vc numbers. The behavior
of the H∧ (resp. H∨) heuristic is closely related to that of
Hsdiff (resp. Hcadv).

To verify these, we rerun all the experiments and each time
a different variable y than the current one x was selected at
a right branch, we ordered all the variables according to their
dom/wdeg value. Then we measured the distance (dis) be-
tween x and y in this ordering (obviously y was always first).
Results show that the average value of dis for Hsdiff was
significantly larger than the average dis for 2-way branching.
For example in the series12 instance, average dis for Hsdiff

was 9 while for 2-way branching it was 1.9. For the geo50-20-
d4-75-1 instance average dis for Hsdiff and 2-way was 14 and
1.6 respectively. These results demonstrate that Hsdiff allows

Table 4. CPU times (t) in secs. and nodes (n) and variable changes (vc) for 2-way and the adaptive branching schemes using the
dom/wdeg VOH.

Instance 2 − way restricted Hsdiff Hcadv H∧ H∨

2 − way (0.1) (wdeg)

geo-d4-75-1 t 2298 1242 1233 2311 1233 2313
(sat) n 0.55M 0.28M 0.27M 0.45M 0.27M 0.45M

vc 1428 0 2 689 2 690

geo-d4-75-2 t 122 28.5 37 57 37 57
(sat) n 48943 9153 12356 18995 12356 18995

vc 642 0 2 58 2 58

haystacks-05 t 41.7 3.9 28.1 41.7 28.1 41.7
(unsat) n 1.78M 0.18M 1.2M 1.78M 1.2M 1.78M

vc 20 0 7 20 7 20

qcp-15-120-5 t 529 408 409 418 409 418
(sat) n 0.76M 0.6M 0.6M 0.61M 0.6M 0.61M

vc 3177 0 1 1347 1 1347

abb313-7 t 498 313 313 429 313 429
(unsat) n 28388 17238 17238 21699 17238 21699

vc 6 0 0 4 0 4

ruler-25-7-a3 t 12.4 4.1 5.8 3 5.8 3
(sat) n 1444 255 291 190 291 190

vc 28 0 3 7 3 7

frb35-17-2 t 337 227 124 99.1 113 99.1
(sat) n 0.13M 0.1M 56508 42712 46935 42712

vc 782 0 6 120 5 120

variable changes only when the selected variable is consider-
ably superior to the current variable according to the VOH.

Finally, in order to evaluate the statistical significance of
our experimental results, a statistical analysis through a set
of paired t-tests was performed. We analyzed the CPU perfor-
mance of the adaptive branching schemes compared to 2-way
and restricted 2-way, over the 400 instances. We measured the
mean difference in secs., standard deviation, t-value and the
95% confidence interval. The risk level (called alpha level) was
set to 0.05. Results are collected in Table 5. The mean CPU
reduction is always greater than zero. However, the negative
values at the confidence interval indicates that this reduc-
tion was not observed in all the tried instances. According to
standard tables of significance (available as an appendix in
the back of most statistics texts) we can confirm that t-values
for Hsdiff were large enough to be significant. This is not
clear for Hcadv, which means that the observed improvement
is not large enough to be clearly significant.

We have also run experiments with the conflict driven VOH
dom/alldel (not reported here due to lack of space) in which
adaptive branching schemes with heuristics Hsdiff (0.001) and
Hcadv(wdeg) were again on average more efficient than the
fixed branching schemes.

Table 5. Paired t-test measurements for evaluation of the
significance of the experimental results.

Mean SD t-value 95% C.I.
2-way vs Hsdiff 61.02 232.7 2.966 (18.96, 103.09)

restr. 2-way vs Hsdiff 332.2 2956 1.231 (-202, 866)
2-way vs Hcadv 8.03 135.3 0.65 (-16.3, 32.5)

restr. 2-way vs Hcadv 279.2 2982 1.025 (-259, 818)

6 CONCLUSIONS

We compared the two most widely used branching schemes
for CSPs, 2-way and d-way branching. Results showed that
the theoretical benefits of 2-way branching are confirmed in
practice once we move from a simple VOH like dom to a more
sophisticated one like dom/ddeg. However, perhaps unexpect-
edly, when a state-of-the-art heuristic like dom/wdeg is used

then there exist many cases where 2-way branching is signifi-
cantly inferior to d-way and a restricted version of 2-way that
is commonly used.

We then introduced generic heuristics that can be used
to dynamically decide whether the VOH will be followed
or not at certain points during search. The application of
such heuristics results in an adaptive branching scheme that
switches between 2-way branching and its restricted version,
which is close to d-way branching. Experiments with instan-
tiations of the generic heuristics confirm that search with
adaptive branching outperforms search with a fixed branching
scheme on a wide range of problems.

The work presented here is, to the best of our knowledge,
the first attempt towards designing heuristics for adaptive
branching and contributes to the design and implementation
of adaptive constraint solvers.

REFERENCES

[1] C. Bessière and J.C. Régin. MAC and combined heuristics: two
reasons to forsake FC (and CBJ?). In Proceedings of CP-1996,
pages 61–75, Cambridge MA, 1996.

[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting
systematic search by weighting constraints. In Proceedings of
ECAI-2004, pages 146–150, Valencia, Spain, 2004.

[3] D. Grimes and R.J. Wallace. Sampling strategies and variable
selection in weighted degree heuristics. In Proceedings of CP-
2007, pages 831–838, 2007.

[4] R.M. Haralick and Elliott. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence,
14:263–314, 1980.

[5] J. Hwang and D. Mitchell. 2-Way vs. d-Way Branching for
CSP. In Proceedings of CP-2005, pages 343–357, 2005.

[6] V. Park. An empirical study of different branching strategies
for constraint satisfaction problems, Master’s thesis, University
of London, 2004.

[7] D. Sabin and E.C. Freuder. Contradicting conventional wisdom
in constraint satisfaction. In Proceedings of CP-1994, pages
10–20, 1994.

[8] D. Sabin and E.C. Freuder. Understanding and Improving the
MAC Algorithm. In Proceedings of CP-1997, pages 167–181,
1997.

[9] B. Smith and P. Sturdy. Value Ordering for Finding All Solu-
tions. In Proceedings of IJCAI-05, pages 311–316, 2005.

