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Abstract: After traffic-related incidents, falls are the second cause of human death, presenting the
highest percentage among the elderly. Aiming to address this problem, the research community has
developed methods built upon different sensors, such as wearable, ambiance, or hybrid, and various
techniques, such as those that are machine learning- and heuristic based. Concerning the models used
in the former case, they classify the input data between fall and no fall, and specific data dimensions
are required. Yet, when algorithms that adopt heuristic techniques, mainly using thresholds, are
combined with the previous models, they reduce the computational cost. To this end, this article
presents a pipeline for detecting falls through a threshold-based technique over the data provided
by a three-axis accelerometer. This way, we propose a low-complexity system that can be adopted
from any acceleration sensor that receives information at different frequencies. Moreover, the input
lengths can differ, while we achieve to detect multiple falls in a time series of sum vector magnitudes,
providing the specific time range of the fall. As evaluated on several datasets, our pipeline reaches
high performance results at 90.40% and 91.56% sensitivity on MMsys and KFall, respectively, while
the generated specificity is 93.96% and 85.90%. Lastly, aiming to facilitate the research community,
our framework, entitled PIPTO (drawing inspiration from the Greek verb “πίπτω”, signifying “to
fall”), is open sourced in Python and C.

Keywords: human fall detection; acceleration-based recognition; wearable device

1. Introduction

Following traffic collisions, the World Health Organization reports that human falls are
the second most common cause of accidental deaths, resulting in approximately 684,000 an-
nual fatalities [1]. Each year, over 37.3 million deadly falls are recorded, with the highest
rates corresponding to individuals over 60 who live in nations with low- and middle-income
backgrounds. As the elderly are prone to falling easily and more frequently, and their
recovery process is usually more challenging and time consuming, the research community
dedicates its attention to detecting human falls [2–4] in places where older people live,
e.g., residential health facilities [5] and nursing homes [6,7]. Additionally, a fall detector is
applied in workplaces in order to enhance employees’ safety [8]. Therefore, this task is one
of the most rising research challenges, owing to the fact that accident determination can be
life saving if combined with a call-for-help or an alarm system [9].

Aiming to address this issue, the existing approaches vary in terms of used sensors,
such as ambiance, wearable, or a combination of them [10–13], as well as on the techniques
which are applied [14,15], such as machine learning [16–18] and heuristic [19]. In particular,
wearable devices, e.g., accelerometers, gyroscopes, barometric sensors, magnetometers
and electromyographic sensors [20–22], are those which fit on an individual and can gen-
erate data directly from the observed subject. On the other hand, ambiance sensors, e.g.,
red-green-blue (RGB) mono or stereo cameras, and microphones receive stimuli from the
environment, and accidents are detected by processing the data from the subject’s external
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surroundings. Although the latter can offer high performance while, at the same time,
detecting accidents occurring in more than one individual, they also present notable draw-
backs [23]. More specifically, as data are received from particular territories, an occurring
event may not be detected in an area not included in the sensor’s range. To reduce and deal
with these restrictions, some frameworks employ the sensors on patrol robots [24,25]. Yet,
the risk of either not detecting an event or recognizing it with delay persists. This limitation
is of particular significance, as prompt detection is of the utmost importance in cases of older
people, while it is only helpful if seen by the system immediately [9,26]. On the contrary,
when a fall detector operates with high-frequency data provided through a wearable device,
these limitations do not exist, as the sensor continuously receives information from the indi-
vidual [27]. Additionally, the acceleration input directly provides human movements and
activities [28]. A typical example includes the case of the LPMS-B2 sensor, which transmits
data up to 400 Hz (https://www.lp-research.com/9-axis-bluetooth-imu-lpmsb2-series/
(accessed on 10 September 2023)), as it was set at 100 Hz on the creation of KFall [21]. To this
end, it is evident that an event is almost impossible to miss if this type of sensor is employed.

Regarding the techniques applied for recognizing a human fall, machine and deep
learning approaches are the ones that attracted the research community, mainly due to their
improved accuracy. However, some negative aspects still exist [27], mainly concerning their
model training process and the computing power needed. Moreover, most of these models,
i.e., support vector machines (SVMs), k-nearest neighbor (k-NN), decision trees, and random
forests, which are usually used, do not accept dynamical inputs [29]. As a result, each
input should have the same length. In the case of the deep learning models, i.e., multilayer
perceptrons (MLPs) [30] and convolutional neural networks (CNNs) [7], the majority also
require consistent input dimensions that are predetermined during the model’s design
phase. In addition, as various sensors operate at distinct frequencies, creating varying
time-series lengths, the models’ inference performance is directly dependent on the sensor.
As a result, they are not easily adaptable to other devices that work on lower frequencies
than the ones used during training. In contrast, recurrent neural networks (RNNs), which
are appropriate for time-series data due to their memory ability, can receive different-sized
input, unlike other types of neural networks [31–33]. However, the interpretability of deep
learning models, in general, is limited [34–36]. Therefore, when new types of falls arise,
they are only recognizable once the model is re-trained with more and newly collected data.

In contrast to the above-mentioned pipelines, heuristic-based methods present low
complexity, while they can be easily adapted to the new data by changing or adding
functions and thresholds. Due to these capabilities, many machine learning approaches
are combined with this type of technique, aiming to reduce the computational cost [37]. In
addition, recent studies focused on information retrieval, subsequence search, and similarity
measurements of time series, aiming to automatically detect both normal and abnormal
patterns, with an extensive application on the task of fall detection [38,39]. To this end, this
article proposes an accelerometer- and threshold-based fall detection algorithm using the
timestamp of each measure while performing on different frequencies. Furthermore, the
presented method detects more than one fall in a time series of sum vector magnitudes,
making it ideal for analyzing more extensive data, unlike machine and deep learning models,
which classify the input between fall and no-fall classes. Finally, our framework shows its
adaptability to work on various acceleration devices as demonstrated during its evaluation
in different sets of devices and datasets. Our main contributions are summarized as follows:

• A heuristic-based human fall detection algorithm that uses as input the acceleration
information provided at different frequencies to recognize an accident. In addition,
more than one event can be detected in a time series of data.

• A method capable of working on various types of sensors.
• An open-source (https://github.com/smoutsis/fall_detection_through_acceleration_

data (accessed on 10 September 2023)) and flexible code, provided in two programming
languages, Python and C, aiming to facilitate future researchers.

https://www.lp-research.com/9-axis-bluetooth-imu-lpmsb2-series/
https://github.com/smoutsis/fall_detection_through_acceleration_data
https://github.com/smoutsis/fall_detection_through_acceleration_data
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The rest of this article is organized as follows. Section 2 contains the related literature
on human fall detectors. Section 3 introduces the methodology, including the two parts
of the proposed pipeline, i.e., fall detection and verification. Section 4 contains our experi-
mental protocol and discusses the method’s outcomes, while in Section 5, the discussion
part presents a comprehensive analysis and interpretation of the results. Finally, Section 6
concludes this article and gives our plans.

2. Related Work

Different approaches have been proposed to address the task of human fall detection.
An extensive review, including comparisons among different pipelines, is available in [40].
Yet, our related section consists of two parts, viz., machine learning- and heuristic-based
techniques. However, we must note that each of the presented works utilizes data from
wearable devices, mostly acceleration sensors.

2.1. Machine Learning-Based Fall Detectors

In contrast to techniques where the patterns are defined heuristically, approaches
belonging to this category learn the corresponding fall patterns during the training pro-
cess [27]. Nevertheless, many experiments and data are required to find the appropriate
models and relative parameters to tackle the problem unbiasedly. Shawen et al. introduce
a framework that automatically detects falls using the sum vector magnitudes of a 5-s
window originating from a mobile phone [41]. The predictions of four machine learning
models, namely, random forest, gradient boosting, SVM, and XGBoost, are combined for
the final decision. Similarly, in [42], three models, viz., a k-NN, an SVM, and a neural
network, are evaluated regarding their complexity as employed on a wearable device. The
models were trained based on a feature vector with a length of 12, extracted through two
equal segments of a 3-s window provided by an accelerometer. This data transformation
is the main reason every model is lightweight, achieving high accuracy and reaching a
score near 98%. Utilizing the sum vector magnitudes of acceleration data in a rule-based
algorithm and a CNN, a low-cost and easily applied framework for older people in nursing
homes is proposed by the authors in [7]. Between these two, the latter performs better
on the three public datasets evaluated. However, the former is chosen, as it produces
remarkable accuracy scores, is computationally lighter, and has greater applicability. In
a similar manner, and aiming to reduce the computational cost, Putra et al. propose a
triggered machine learning pipeline. Their method is based on the sum of acceleration data,
while the generated outcome is enabled according to the occurring fall peaks. The extracted
features, which are the inputs of the tested models, namely, CART, k-NN, logistic regression,
and SVM, come from three segments, viz., the pre-peak part, the peak, and the post-peak.
A threshold-based approach, similar to [29], is proposed in [37]. Features are extracted
according to peaks, while four models are evaluated, viz., a feed-forward neural network,
an SVM, a decision tree, and a rule-based system. Moreover, the hidden Markov models
(HMMs) handle the task of human activity recognition and the subcategory of fall detection
with efficiency and interpretability, due to their natural modeling traits for time-series
data [22,43,44]. In [43], the problem is treated as a recognition between the various types
of accidents and daily actions, instead of binary classification, and efficiency is tackled by
single-state HMM and fixed-number-of-state HMM. Similarly, Hiu et al. present a novel
technique based on HMM, focusing on explanation and scalability. Partitioning and state
generalization among activities is achieved by drawing inspiration from speech recognition,
while the interoperability of the underlying structure of human actions seems to be better
in HMM than in neural networks [44].

2.2. Heuristic-Based Fall Detectors

Methods belonging to this category define the data pattern needed for detecting a
possible human fall. Kangas et al. [45] propose three algorithms that differentiate specific
parts of a fall, particularly the beginning, the falling velocity, the fall impact, and the
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posture after the fall. Their input from an accelerometer, i.e., sum vector magnitudes, and
data from three different body parts, the head, the waist, and the wrist, were tested. iFall
detects accidents based on upper and lower thresholds, while false positives are reduced
using position data and user feedback [46]. The proposed method uses information from
a three-axis accelerometer adjusted on user characteristics, such as height, weight, and
activity levels. Finally, an alarm is sent through an Android application. Similarly, F2D
recognizes an event according to upper and lower thresholds, yet, the information of the
fall’s rebound, the residual movement, and the location are also applied [47]. Casilari and
Oviedo-Jiménez [48] find that a system’s performance improves if more than one sensor
is used. Towards this goal, four algorithms, viz., iFall, basic threshold monitoring, fall
index [49], and two-phase detection [50], are tested in their framework. iFall is shown
to outperform the other techniques. A threshold-based pipeline that utilizes differential
acceleration data instead of the sum of acceleration is proposed in [19]. The sensors are
placed to show solely that their direction is known without the user’s contribution [51].
By discretizing a fall event into four parts, viz., fall’s beginning, impact, aftermath, and
orientation change, the authors in [51] detect elderly falls through acceleration data in a
MATLAB mobile application. An alarm is generated if the algorithm locates these four
parts in a consecutive sequence and in a specific time interval.

3. Methodology

The following section describes the proposed accelerometer- and heuristic-based algo-
rithm for detecting human falls. We start with an overview of the preliminary information
needed, and the implementation details for our two-part system, as represented in Figure 1,
are given subsequently.

Figure 1. The system’s architecture is distinguished into three stages. The initial step (yellow boxes),
including data processing, comes first. Subsequently, potential fall events are identified (blue boxes),
while a series of sequential evaluations are performed in each possible fall during the third phase
(green boxes). Lastly comes the outcome (red box), which gives the detected fall incidents.
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3.1. Fall Detection Foundation

In our effort to implement an algorithm that detects falls solely based on data provided
by an accelerometer, the limitation of orientation information arises. Consequently, we rely
on the sum vector magnitude of x, y, and z measurements (Equation (1)), which remains
constant regardless of the sensor’s orientation. As various terms, such as the norma,
sum of acceleration, acceleration, and magnitude, are also used to describe the sum vector
magnitudes, in this work, we will refer to this measurement as the magnitude:

Sum vector magnituden = Norman = Accelerationn =
√

x2
n + y2

n + z2
n (1)

According to the literature [29,46,47,51] and the visualization of human falls (see
Figure 2) during an accident, the sum vector magnitudes generated from the accelerometer
data produce a plot similar to the one depicted in Figure 2. The two main parts that imply
an event are the low and high values of the magnitudes as shown by the blue and red
color (see Figure 2), respectively. Moreover, the same pattern, where low magnitudes are
followed by highs, is observed in various types of falls as illustrated in Figure 3. Regarding
the measurements after an accident, very small changes are noted. When this initial phase
passes, the magnitudes appear to stabilize at the acceleration of gravity (g = 9.80665 m/s2),
suggesting that the person has fallen and is no longer in motion. However, the pattern
generated by the sensor before an incident cannot be precisely defined, as it depends
on the subject’s previous actions. For instance, when the person sits prior to a fall, the
values remain stable at g since no movement occurs (Figure 3, lower left). Furthermore, as
the activity intensity increases, measurement fluctuations become more pronounced, as
evident in the Figure 3 upper plots, where the person either sits down or gets up before
the accident.

Figure 2. Representative images of a human fall from the UR dataset [10] and the sum vector
magnitudes of x, y, and z measured in m/s2. During an accident (right image), a sequence of
magnitudes that consists of low values at the beginning (plot’s blue part) and then steep highs (plot’s
red part) is generated. As shown, the measurements are close to the earth’s gravity (plot’s green part)
as the subject walks (left image).
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Figure 3. Time-series of sum vector magnitudes in various types of fall, viz., “Forward fall when
trying to sit down”, “Backward fall when trying to sit down”, “Forward fall when trying to get up”,
“Lateral fall when trying to get up”, “Backward fall while sitting, caused by fainting”, “Forward fall
while walking caused by a slip”, “Forward fall while walking caused by a slip” and “Forward fall
while jogging caused by a trip” from KFall dataset [21]. The colored dots correspond to falls. More
specifically, the blue are the low values of magnitudes, the red are the high values, and the orange
ones denote the intermediates.

In relation to those mentioned above, our pipeline comprises two parts. The first
regards the detection of human falls based on the low and high values, while the second part
evaluates them according to certain checks on time limitations and their impact compared
to the neighboring data. As input, we use the magnitude of a three-axis accelerometer.

3.2. Detecting Human Falls

At first, each of the low and high magnitudes that reaches a specific level is considered
a possible case that should be noted. A representative example is given in Figure 4 (left),
wherein seven falls are illustrated. In particular, the red points correspond to the high
measurements, the blue ones represent the low, and the black points are the normal
conditions. Subsequently, we cluster these values according to their case, i.e., low or high,
generating sets of continuous values. There are differentiated based on their time thresholds.
Then, each group’s first and last measurements are kept for further processing. Towards
this goal, the “entry” variable (Equation (2)) is created and used as a new timestamp. To
this end, a set of lows or highs is produced only if the subtraction between two “entries” is
bigger than e (Figure 4, right).

Figure 4. Representation of low and high sum vector magnitudes of x, y, and z accelerations. The
blue dots correspond to the lows, while the red ones depict measurements belonging to the highs
(left). The red rectangles show the set of highs created according to time constraints, while the blue
rectangles illustrate the lows (right).
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entryn =
timestampn − timestampn−1

10
+ entryn−1 +

100
Sensor(Hz)

(2)

Using the entry variables, the sets of lows are connected with a group of highs, while
these connections correspond to possible falls. Specifically, if a subtraction between a
low and a high entry is smaller than f all_duration, then our system considers that these
magnitudes correspond to an event. An example is given in Figure 5, wherein the seven
falls illustrated by light-blue and orange colors are detected after the proposed connection.
The first part of our method is presented in Algorithm 1.

Algorithm 1 Detecting human falls

Require: Two lists, magn_list and time_list . Lists with the magnitudes of x, y, and z
acceleration measurements and the corresponding timestamps

Ensure: Two lists, f all, and index . Lists of lists, where the times and indexes of falls are
contained

1: low, high, entry← empty lists
2: entry.append(0)
3: HZ ← the frequency of the sensor
4: for i← 1 to length(time_list) do
5: entry.append((time_list[i]− time_list[i− 1])/10) + entry[i− 1] + (100/HZ)
6: if magn_list[i] < min_limit then
7: low.append(i)
8: else if magn_list[i] > max_limit then
9: high.append(i)

10: end if
11: end for
12: if length(high) = 0 or length(low) = 0 then
13: return No Fall
14: end if
15: new_low, new_high← empty lists
16: for each high, low do
17: if a high is quite far from the next one then . Keep the first and last high of a set
18: new_high.append(create a set of highs)
19: end if
20: if a low is quite far from the next one then . Keep the first and last low of a set
21: new_low.append(create a set of lows)
22: end if
23: end for
24: f all, index ← empty lists
25: for i← 0 to length(new_low) step 2 do
26: for j← 0 to length(new_high) step 2 do
27: if a low is close enough to a high then . Create a fall with the start point as the

low and the finish point as the high
28: f all.append(entry[new_low[i]], entry[new_high[j]])
29: index.append(new_low[i], new_high[j])
30: end if
31: end for
32: end for
33: if length( f all) = 0 then
34: return No Fall
35: else
36: return f all, index
37: end if
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Figure 5. Detected falls as found by our pipeline after connecting highs. The colored dots represent
the sum vector magnitudes of x, y, and z corresponding to a human fall.

3.3. Validating the Detected Accidents

Subsequently, the proposed algorithm validates the detected human falls, aiming to
accept or reject them. More specifically, we examine if a case participates in multiple events.
As shown in Figure 6 (left), the high set is connected with two different low cases and two
fall results. In order to address this error, we search for the smaller time range among their
connections. This way, only the shorter fall is accepted as depicted in Figure 6 (right).

Figure 6. Validating a lateral human fall detection on the KFall dataset [21]. The first check refers
to the cases where a low/high is connected with more than one, resulting in multiple falls (left). In
these cases, the shorter fall is accepted, while the longer is rejected (right). Each segmental coloring
indicates a different possible fall. In the red boxes the high values are included, while in the blue
boxes the low values are incorporated.

Afterward, if more continuously low values exist closer to the high ones, each fall’s
length is evaluated in order to be shrunk as illustrated in Figure 7 (left). Our technique
recognizes a true event when the subtraction between the high-entry, i.e., the end of the
fall, and low-entry, i.e., the start of the fall, is greater than f all_limitation. To rectify the
long-range accident, the starting point is shifted to the lower value closer to the high one as
presented in Figure 7 (right). Additionally, any remaining long fall is rejected due to the
fact that a real event occurs in a short period of time [37].

Finally, two more checks are applied to the detected accidents based on the following
assumptions:

• Following a fall, the person remains on the ground, and the magnitude of a time series
stays close to g.

• If more peaks are close to the fall, the highest magnitude should be greater than the
neighboring ones.
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Figure 7. Illustration of the second check after the fall detections. If the starting low point is not close
to the high one, it is shifted to another low closer to its peak. This check is depicted in the upper line
of the plots, where the initial start point of the left plot (blue box) is transported to another value
that is closer to the peak of the fall (red box) as depicted in the right plot. If no low value exists
near the high, the detected fall is rejected as it is represented on the plots of the bottom line, where
the detected fall of the left plot is not maintained after the third check. The plots in the upper are
generated by a “forward fall,” while the plots in the bottom correspond to a “stand, sit and get up”
action from the KFall dataset [21]. Each segmental coloring indicates a different possible fall. In the
red boxes the high values are included, while in the blue boxes the low values are incorporated.

Therefore, an identified event is endorsed if at least one of the aforementioned as-
sumptions is satisfied. Regarding the first, the magnitudes’ average score and the standard
deviation are calculated. After the accident, these measurements are taken within a short pe-
riod of time following the detection through the utilization of entries. The first assumption
holds true if the average score is close to g while the standard deviation is low, indicating
the absence of sharp changes. Concerning the second, it is satisfied if the highest fall
magnitude is greater than any other before and after the accident. Figure 8 gives four
examples of how the last checks work. Plots on the left depict possible falls before their
validation, while the right ones present the final detection. More specifically, the first line
illustrates how the system performs when both statements are valid. In the second line of
plots, the peak of the possible fall is not the higher one. However, most of the magnitudes
next to the fall are close to g, so the accident is accepted. Two falls are detected in the third
line. Yet, the first one is rejected, as none of the statements are valid, while the second fall is
accepted as the highest peak. Finally, two falls are detected in the last line; nevertheless,
neither of them is accepted because their peaks are not close to the highest value, and their
magnitudes after the event are not close to g. Algorithm 2 gives the validation process.
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Figure 8. Illustration of the third (last) check after the fall detections. On the left, plots show the
possible events before the last check, while on the right, the corresponding final falls after the check.
During our last check, a fall is accepted either if its highest magnitude is also the highest among the
close peaks or the magnitudes placed beyond the fall are close to the earth’s gravity g. The first line of
plots gives an accepted fall when both assumptions are satisfied (the plots correspond to a “forward
fall” from KFall [21]), while the second line shows an accepted accident as the fall is close to g (the
plots correspond to a “backward fall” from KFall). The third line rejects the detected event as neither
of the assumptions is valid; however, the second fall is approved, as its peak is higher than any other
close to the second event (the plots correspond to a “vertical fall” from KFall). Finally, the last line
indicates rejected falls since neither of the assumptions is valid (the plot corresponds to a “stumble
while walking” from KFall). Each segmental coloring indicates a different possible fall.
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Algorithm 2 Validating the detected accidents

1: Input: Four lists, magn_list, time_list, f all and index . Lists with the magnitudes of x,
y and z accelerations along with the corresponding timestamps and the detected falls
from the first part of the algorithm

2: Output: Two lists, new_ f all and new_index . Lists of lists, where the times and
indexes of the falls are contained

3: low, high, entry← empty lists
4: g← 9.807
5: for i← 0 to length(new_ f all) do
6: if a low or a high participates in more than one fall then
7: keep the shorter fall and delete the longer
8: save the entries in the new_ f all list
9: save the indexes in the new_index list

10: end if
11: end for
12: for each fall in new_ f all do
13: if a fall is long then
14: if the fall can be shorter then
15: swift the start point (low value) of the fall to be closer to the high
16: else
17: delete the fall
18: end if
19: end if
20: end for
21: if length(new_ f all)=0 then
22: return No Fall
23: end if
24: for each f all, magn in new_ f all, magnl ist do
25: if the magnitudes after the fall are close to g or the peak of the fall is the highest

magnitude then . As the peak is defined, the highest magnitude into the fall range
26: keep the fall
27: else
28: delete the fall
29: end if
30: end for
31: if length(new_ f all) = 0 then
32: return No fall
33: else
34: return new_ f all, new_index
35: end if

4. Experiments

The following section evaluates the proposed technique. First, we briefly describe
the datasets used for the experimental protocol. Next, the corresponding metrics utilized
for measuring the framework’s outcome are given. Finally, an extensive validation of the
proposed solution follows.

4.1. Datasets

Three publicly available and well-known datasets are selected for our experiments.
Among the chosen ones, UR [10] and KFall [21] are selected for validation and threshold
determination. Yet, the latter is also used for testing. At last, MMsys (or Cogent) [20] is
adopted for testing along with KFall.
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4.1.1. Validation Set

UR was created by 9 subjects: it provides red-green-blue, depth, and acceleration
data for 3 types of 40 daily actions, viz., lying, sitting, and bending, and 2 types of 30 falls,
frontward while standing and frontward while sitting.

Figure 9 shows a fall and daily action snapshots from the dataset’s creation. For our
work, only the acceleration data, included in CSV files, are utilized corresponding to a fall
or a daily action. However, no information is provided about the time of the measurements.
Aiming to tackle this, our pipeline generates timestamps, as it is known that the sensor
receives data at a frequency of 60 Hz.

Figure 9. Representative images from the UR dataset [10]. At the left, front fall is shown while the
subject is sitting. The right image depicts the daily action of laying.

KFall was created by 32 subjects who performed 21 types of daily activities: ”walk
quickly”, “jog quickly”, “sit down to a chair quickly”, and “lie down on a bed quickly”.
Moreover, 15 types of simulated falls are also included, viz., “forward/lateral fall when try-
ing to get up”, “forward/lateral/backward fall while sitting, caused by fainting”, “forward
fall while walking/jogging caused by a trip/slip”, and “forward/lateral fall when trying
to sit/get down/up”. LPMS-B2, placed on the low back, is used as a sensor for recording
since it captures data at a 100 Hz sampling rate and includes a three-axis accelerometer,
a three-axis gyroscope, and a three-axis magnetometer. After converting them from g
(9.807 m/s2) to m/s2, only the acceleration input is employed during our experiments. At
last, there are 5075 CSV files, out of which 2729 correspond to daily activity (no fall), and
2347 to a fall. We utilize 20% for validating each sub-class, generating a set of 593 falls and
689 daily actions. Figure 10 shows a fall and a daily action snapshot captured during the
dataset generation.

Figure 10. Representative images from the KFall dataset(with permission from [21]). At the left,
frontward fall caused by a trip while the subject walks. The right image depicts the daily action of
jogging quickly with a turn—4 m.
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4.1.2. Test Set

MMsys comprises a total of 42 subjects who participated in 7 types of daily actions, viz.,
“standing”, “lying”, “sitting on the bed”, “sitting on the chair”, “walking”, “crouching”,
and “ascending/descending a staircase”. In addition, 6 types of falls: “fall forward”,
“fall backward”, “fall right”, “fall left”, “real fall forward”, and “real fall backward” are
included.

Furthermore, one more class was implemented, the “near fall”, which presents cases
of balance impairment without resulting in an actual fall. Figure 11 illustrates a fall and a
daily action snapshot captured during the dataset’s generation. Concerning the sensors
used, two identical SHIMMER devices were adopted. In particular, one was applied to
the chest and the other to the thigh of the subject. This way, acceleration and gyroscopic
data from both body parts are provided in three axes. Due to the fact that the timestamps
or any other information about time are not included, we generated them based on the
sensor’s frequency (100 Hz). For each subject, a CSV file, where all the acceleration data are
included, is produced, wherein a label indicates the class that the measurement belongs
to. In total, MMsys contains 448 falls and 1490 daily activities. At last, the remaining 80%
of each sub-class from KFall is also used on testing, creating a test set of 1753 falls and
2040 daily actions.

Figure 11. Representative images from the MMsys dataset [20]. A fall is depicted on the left, while
daily action is shown on the right.

4.2. Thresholds’ Evaluation

UR and KFall are chosen to validate the proposed method, while 5 out of 8 thresholds
are evaluated on various values and combinations. The selected values are presented in
Table 1. The “min_limit” concerns the maximum value, where a magnitude is considered
low, while the “max_limit” indicates the minimum one, where a magnitude is defined
as high. “sub_1” defines the time entry distance that should exist between two cases,
and it is set to 50 so as to indicate that if the subtraction between two entries exceeds 50
('0.5 s), two magnitudes are the end of the previous set and the start of the subsequent
one as shown in Figure 4. It is worth noting that a set of highs or lows can consist of one
magnitude. Next, “ f all_duration” is the maximum value that the subtraction of finish-high
and a start-low entries should be so as to consider the connection of these magnitudes as a
possible fall. Respectively, “ f all_limitation” is the maximum value that should be satisfied,
corresponding to the entry difference between the end (last high) and the start of the fall
(first low), so as to allow the proposed system to identify a long fall and subsequently
validate it. Finally, “dist_1” and “dist_2”, both set to 100, refer to the entry distances before
and beyond the fall, wherein highs should be searched. However, during this search, highs
are not considered the ones which are greater than “max_limit” but those which are higher
than another “max_limit_2”.
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Table 1. The main thresholds which are utilized on the proposed algorithm are 8, viz., min_limit,
max_limit, sub_1, f all_duration, f all_limitation, dist_1, dist_2 and max_limit_2. Five of them are
evaluated, aiming to find the combination of thresholds needed for achieving higher performance in
the validation set. The remaining three are set during the implementation of the algorithm.

Index Description Threshold Evaluated

1 The upper limit threshold for classifying
magnitudes is low. min_limit YES

2 The low limit threshold for classifying
magnitudes as high max_limit YES

3
The minimum subtraction, of the entries, that
two lows/highs must have to be considered a

different set of lows/highs
sub_1 = 50 NO

4
The maximum subtraction, of the entries, that a
set of highs with a set of lows should have to be

considered a fall
f all_duration YES

5
The minimum subtraction of the entries that
start with the end of a fall should have to be

defined as long
f all_limitation YES

6, 7 The entry distance before and after the fall,
where the algorithm should search for highs

dist_1 = 100,
dist_2 = 100 NO

8 The low limit threshold for classifying
neighboring, to the fall, magnitudes as high max_limit_2 YES

4.3. Metrics

We used accuracy, sensitivity, and specificity as metrics to validate the proposed fall
detector. These are defined by Equations (3)–(5), respectively. Concerning the testing,
precision as displayed in Equation (6) is adopted. Both are based on true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) detections. TPs are determined as
the cases where the system correctly identifies an event, FPs are the incorrectly detected
accidents, TNs are the correct non-fall detections, and FNs are the falls that the framework
should have recognized but the system did not achieve it. If more events are identified in a
time series wherein non-, or a fall, is included, the FPs increase accordingly:

Accuracy =
True Positives + True Negatives

True Positives + False Positives + True Negatives + False Negatives
(3)

Sensitivity = Recall = True positive rate =
True Positives

True Positives + False Negatives
(4)

Specificity =
True Negatives

True Negatives + False Positives
(5)

Precision =
True Positives

True Positives + False Positive
(6)

Accuracy constitutes the correct detections for non- and fall cases, highlighting their
significance. While it is one of the most common metrics used, it should be treated cau-
tiously, as it depends on the applied dataset. For instance, if a pipeline detects only falls
when 95 falls and 5 non-falls exist, the accuracy would be 95%. The metric of sensitivity, or
also recall, reveals how the system performs concerning positive detections. On the other
hand, specificity reflects the algorithm’s ability to handle negative recognitions by deter-
mining the rate of correct non-falls detections. The above-mentioned metrics should be
considered simultaneously, as each alone can lead to wrong conclusions. Finally, precision
is defined as the system’s ability to avoid FPs. This metric is complementary to sensitivity.
A high score for both sensitivity and specificity is desirable, as their balance is essential.
However, a higher score on the former is preferred over the latter, as it is advantageous to
detect more false falls than losing an actual one.
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4.4. Validation

Various experiments were conducted to determine the thresholds and assess the
algorithm’s performance by applying different combinations of values. Table 1 presents five
out of the eight thresholds, viz., min_limit, max_limit, f all_duration, f all_limitationand
max_limit_2, that are tested. The three remaining thresholds, namely sub_1, dist_1, and
dist_2, are set on 50, 100, and 100, respectively. Our validation is divided into two parts: the
first comprises f all_limitation and max_limit_2 when initially set to 100 and “max_limit”,
respectively. The remaining three thresholds were tested (see Table 2). The second part
evaluates the previous contrast values (see Table 3). The first three received the highest
values achieved during the first part. Considering that the lowest magnitudes on KFall
and UR are 0.11 and 0.05 and the greatest are 67.89 and 111.81, we set the initial validation
values of “min_limit” to 2 and “max_limit” to 100. The f all_duration is selected at 100,
which corresponds to about one second.

Table 2. Results on the first part of validation. Accuracy, sensitivity, and specificity on KFall [21]
(validation set) and UR [10] datasets are presented, while the thresholds min_limit, max_limit, and
f all_duration are evaluated. The thresholds of f all_limitation and max_limit_2 are set on 100 and
max_limit, respectively. The bolds indicate the chosen variable and values for the thresholds.

Thresholds KFall Validation Set UR

Min_Limit Max_Limit Fall_Duration Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

2 100 100 53.74% 0.00% 100.00% 57.14% 0.00% 100.00%
3 90 100 53.74% 0.00% 100.00% 58.57% 3.33% 100.00%
3 80 100 53.74% 0.00% 100.00% 64.29% 16.67% 100.00%
3 70 100 53.74% 0.00% 100.00% 67.14% 23.33% 100.00%
3 60 100 55.93% 4.72% 100.00% 68.57% 26.67% 100.00%
4 50 100 65.91% 26.98% 99.42% 81.43% 56.67% 100.00%
4 60 100 55.93% 4.72% 100.00% 77.14% 46.67% 100.00%
3 50 100 65.29% 25.63% 99.42% 70.00% 30.00% 100.00%
5 50 100 66.46% 28.16% 99.42% 82.86% 60.00% 100.00%
5 45 100 74.65% 47.39% 98.11% 82.86% 60.00% 100.00%
5 40 100 85.65% 75.04% 94.78% 84.29% 66.67% 97.50%
5 35 100 86.66% 85.16% 87.95% 84.29% 66.67% 97.50%
5 30 100 87.05% 91.91% 82.87% 85.71% 70.00% 97.50%
6 25 100 85.97% 93.76% 79.28% 82.86% 80.00% 85.00%
6 20 100 79.00% 94.94% 65.37% 78.87% 80.00% 78.05%
6 avg 100 69.58% 58.01% 79.40% 74.29% 46.67% 95.00%
6 avg + 10 100 79.70% 94.94% 66.67% 78.87% 80.00% 78.05%
6 max(avg, 10) + 10 100 79.70% 94.94% 66.67% 78.87% 80.00% 78.05%
6 max(avg, 20) + 10 100 86.19% 90.22% 82.73% 90.00% 83.33% 95.00%
6 max(avg, 20) + 15 100 86.51% 83.64% 88.97% 90.00% 83.33% 95.00%
5 max(avg, 20) + 10 100 87.05% 91.91% 82.87% 85.71% 70.00% 97.50%

5.5 max(avg, 20) + 10 100 86.66% 91.40% 82.58% 88.57% 80.00% 95.00%
5.8 max(avg, 20) + 10 100 86.35% 90.56% 82.73% 90.00% 83.33% 95.00%
7 max(avg, 20) + 10 100 84.63% 85.67% 83.74% 92.86% 90.00% 95.00%

6.5 max(avg, 20) + 10 100 85.96% 88.53% 83.74% 92.86% 90.00% 95.00%
6.4 max(avg, 20) + 10 100 85.73% 88.70% 83.16% 92.86% 90.00% 95.00%

6.25 max(avg, 20) + 10 100 85.80% 89.21% 82.87% 91.43% 86.67% 95.00%
6.5 max(avg, 20) + 10 150 85.57% 89.38% 82.29% 92.86% 90.00% 95.00%
6.5 max(avg, 20) + 10 200 85.66% 91.23% 80.87% 92.86% 90.00% 95.00%
6.5 max(avg, 20) + 10 250 85.57% 91.57% 80.41% 92.86% 90.00% 95.00%
6.5 max(avg, 20) + 10 110 86.12% 89.04% 83.60% 92.86% 90.00% 95.00%
6.5 max(avg,20)+10 105 86.19% 89.04% 83.74% 92.86% 90.00% 95.00%
6.5 max(avg,20)+10 90 85.49% 87.18% 84.03% 91.43% 86.67% 95.00%
6.5 max(avg,20)+10 95 85.96% 88.36% 83.89% 91.43% 86.67% 95.00%

Table 2 gives the results on the validation sets. The first line of scores corresponds
to the initialized values of thresholds. In cases where min_limit is less than or equal to
5 and max_limit is larger than 40, very high scores on specificity and very low scores
on sensitivity are noticed. This imbalance is observed because highs are characterized
only by the elevated points, while lows are classified solely by the very low points. As
a result, the connections between them that correspond to falls are restricted, and our
system fails in detecting falls, yet performs well in detecting non-falls. Therefore, this
fact is reasonable in KFall when the max_limit is over 60, as the highest magnitude in
the validation set of KFall is 67.89. However, higher values for max_limit were tested
for evaluating the performance on UR. The highest magnitude is 111.81. The imbalance
between sensitivity and specificity is reduced as min_limit gets higher and max_limit lower.
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More specifically, on KFall, the most imbalanced performance, i.e., 85.16% and 87.95% in
sensitivity and specificity, respectively, is reached when min_limit is set to 5, max_limit to
35, and f all_duration to 100. Regarding UR, we achieved 80.00% in sensitivity and 85.00%
in specificity when min_limit is 6, max_limit is 25, and f all_duration is 100. Due to the fact
that the aforementioned performance results are attained at different thresholds, max_limit
receives a value that depends on the average score of all the magnitudes in subsequent
experiments, aiming to adapt the algorithm each time to the data it receives.

Table 3. Results of the second part of validation. The metrics accuracy, sensitivity, and specificity on
KFall [21] (validation set) and UR [10] datasets are represented, while the thresholds f all_limitation
and max_limit_2 are evaluated. The thresholds min_limit, max_limit, and f all_duration are set on
6.5, max(average(magnitudes), 20) + 10 and 105, respectively, as these values (and variable) arise
from the first part. The bolds represent the chosen variable and value for the thresholds.

Thresholds KFall Validation-Set UR

Fall_Limitation Max_Limit_2 Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

100 max_limit 86.19% 89.04% 83.74% 92.86% 90.00% 95.00%
100 max_limit + 5 85.88% 89.04% 83.16% 92.86% 90.00% 95.00%
100 max_limit + 10 84.45% 89.21% 80.38% 92.86% 90.00% 95.00%
100 max_limit + 6 85.65% 89.04% 82.73% 92.86% 90.00% 95.00%
100 max_limit + 1 86.19% 89.04% 83.74% 92.86% 90.00% 95.00%
105 max_limit 86.12% 89.04% 83.60% 92.86% 90.00% 95.00%
110 max_limit 85.88% 89.04% 83.16% 92.86% 90.00% 95.00%
115 max_limit 86.12% 89.04% 83.60% 92.86% 90.00% 95.00%
120 max_limit 86.12% 89.04% 83.60% 92.86% 90.00% 95.00%
125 max_limit 86.12% 89.04% 83.60% 92.86% 90.00% 95.00%
95 max_limit 86.19% 89.04% 83.74% 92.86% 90.00% 95.00%
90 max_limit 86.27% 89.04% 83.89% 92.86% 90.00% 95.00%
85 max_limit 86.35% 89.04% 84.03% 92.86% 90.00% 95.00%
80 max_limit 86.35% 89.04% 84.03% 92.86% 90.00% 95.00%
75 max_limit 86.35% 89.04% 84.03% 92.86% 90.00% 95.00%
70 max_limit 86.35% 88.70% 84.33% 90.00% 83.33% 95.00%
65 max_limit 86.35% 88.70% 84.33% 90.00% 83.33% 95.00%
60 max_limit 86.27% 88.53% 84.33% 90.00% 83.33% 95.00%

Furthermore, in Figure 12 the outcomes detailed in Table 2 are given through AUC–
ROC curves. In these representations, each combination of thresholds is depicted on a plot,
where the y-axis represents the true positive rate (TPR) or sensitivity, while the x-axis corre-
sponds to the false positive rate (FPR), which is calculated as 1− Speci f icity. In an AUC–
ROC curve, a model positioned closer to 1 for TPR and closer to 0 for FPR is considered
a better classifier. Regarding KFall (see Figure 12, left), it is observed that the algorithm’s
performance is enhanced when the max_limit average score is set to max(avg, 20) + 10.
Additionally, a balance between high TPR and low FPR is established when min_limit is
set to 6.5, and f all_duration remains close to 100. On the contrary, very low values for
min_limit and high values for max_limit lead to reduced FPR and TPR (Figure 12).

It is worth noting that the highest TPR is attained when the values 6.5, max(avg, 20) + 10,
and 105 are set for the thresholds min_limit, max_limit, and f all_duration, respectively, as
shown in Figure 12. Meanwhile, the FPR remains at 0.05. Consequently, the aforemen-
tioned values are chosen in the initial validation phase due to their superior and balanced
performance in terms of sensitivity and specificity. This selection is substantiated by the
data presented in Table 2 and the AUC–ROC curves of Figure 12, which demonstrate their
effectiveness on both KFall and UR.

Next, the two remaining thresholds, f all_limitation and max_limit_2, are examined
by keeping constant the first three thresholds at the values and variables that were defined
previously. As depicted in Table 3, our metrics on UR are maintained at 90.00% and 95.00%
until the f all_limitation is lower than 75. This occurrence is attributed to the fact that
max_limit_2 is applied on the data where continuous peaks arise, e.g., when the subject
runs or jumps. However, in contrast with KFall, in UR, such actions are not included.
Furthermore, max_limit_2 is initially set to be equal to max_limit and was tested only
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with higher values. Lower ones would not affect our algorithm’s detections since this
threshold specifically pertains to neighboring peaks, where the fall should be greater in
order to be accepted. Nevertheless, as depicted in the first five lines of Table 3, where higher
values were tested, the performance exhibited a decline. Regarding f all_limitation in both
datasets, the sensitivity decreases as it receives very low values (70, 65, and 60), causing
our system to become more stringent in accepting a fall.

Figure 12. AUC–ROC curves are shown for 32 different combinations of thresholds, including
min_limit, max_limit, and f all_duration, while the thresholds f all_limitation and max_limit_2 are
set to 100. The left curve corresponds to the results from KFall [21], while the right plot depicts the
metrics for UR [10]. The combination of the chosen threshold values is represented by the larger dot.

Respectively, from the AUC–ROC curves, which are depicted in the plots of Figure 13,
it is evident that changes in the thresholds of the second validation phase affect the al-
gorithm’s performance less compared to those of the first part, as the various versions
are placed close to each other. Particularly, in the curve of UR (Figure 13, right), all the
combinations are placed at exactly the same point except for the three cases, where the
f all$l imitation is less than 70, while TPR is reduced. Additionally, from the KFall’s curve
(Figure 13, left), it is observed that as the max_limit_2 is increased from the max_limit, FPR
is also increased without TPR being enhanced. As for the f all_limitation threshold, the al-
gorithm’s performance remains stable for values either lower or higher than 100. However,
when it falls below 70, there is a noticeable but minor impact on both TPR and FPR.

Figure 13. AUC–ROC curves are shown for 18 different combinations of thresholds, including
f all_limitation and max_limit_2, while the thresholds min_limit, max_limit, and f all_duration are
set to 6.5, max(avg, 20) + 10 and 110, respectively. The left curve corresponds to the results from
KFall [21], while the right plot depicts the metrics for UR [10]. The larger dots on the plots represent
the combination of selected threshold values.
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Finally, when f all_limitation is set at 85, 80, and 75, the sensitivity on KFall remains
unchanged at 89.04%. Yet, the specificity improves from 83.74% to 84.03%, prompting us to
choose 85 for f all_limitation, aiming to accept more falls, and set max_limit_2 to be equal
to max_limit (= max(avg, 20) + 10).

4.5. Method’s Outcome and Comparative Results

After our validation process, the final values of each threshold as chosen are as follows:

• min_limit = 6.5, evaluated.
• max_limit = max(average(magnitudes), 20) + 10, evaluated.
• sub_1 = 50, not evaluated.
• f all_duration = 105, evaluated.
• f all_limitation = 85, evaluated.
• dist_1 = 100, not evaluated.
• dist_2 = 100, not evaluated.
• max_limit_2 = max_limit, evaluated.

Table 4, wherein the final results on the test sets are depicted, shows a sensitivity of
90.40% and 91.56% on MMsys and KFall, respectively, exhibiting the improved performance
of our human fall detector. Additionally, the system proves it is not weak to non-fall actions,
as it achieves a specificity score of 93.96% on MMsys and 85.90% on KFall. At the same time,
the balance between sensitivity and specificity declares that our framework distinguishes a
fall from daily activity. Moreover, the proposed pipeline outperforms the heuristic-based
approach of [45] on MMsys, concerning the sensitivity and the rule-based method of [7]
on KFall. Regarding the precision, both other pipelines achieve higher rates, implying
that FPs are less; yet, it is preferable for a system to detect false events but, at the same
time, identify a correspondingly higher number of TPs, especially if the balance between
these metrics is maintained. The comparison between the proposed algorithm, the logistic
regression described in [29], and the CNN-based in [7] indicates that our framework does
not outperform the machine learning approaches. Finally, regarding the part of the place
where the sensor is located on the human body, the results on MMsys demonstrate that
our system fails to reach high performance results when the sensor is positioned on the
thigh instead of the chest. The scores of 76.88%, 62.28%, 81.28%, and 50.00%, for accuracy,
sensitivity, specificity, and precision, respectively, declare this fact.

Tables 5 and 6 present TPs and FPs for each sub-class separately when tested on MMsys
and KFall. The aforementioned results permit us to understand where the algorithm
performs well and where it does not. In Table 7, the results from Tables 5 and 6 are
compressed by displaying the set of sub-classes within the corresponding range of false
rates. In a total of 50 sub-classes, in both test sets, the proposed pipeline does not make
mistakes in 15 sub-classes, while the false rate is very small, from 0.1% to 5%, in the other
16. Moreover, it performs well in six more sub-classes, showing a false rate between 5.1%
and 10%, while in the other eight, it ranges from 10.1 to 15%. The following five sub-classes
constitute the weak aspect of our system. In particular, “Near fall” on MMsys reaches a
false rate of 46.99%. “Stumble while walking” on KFall reaches a score of 51.26%. “Forward
falls while jogging caused by a trip” on KFall obtains a 60.71% false rate. Similarly, “Sit a
moment trying to get up and collapse into a chair” on KFall obtains a score of 69.23%, and
finally, “Gently jump when trying to reach an object” on KFall achieves a 82.50% false rate.

Lastly, in “False-2” at Tables 5 and 6, we present every wrong detection that occurred
before our last check. When it is not applied, the performance is reduced, particularly in
the non-fall sub-classes, where the data patterns are similar to those of falls. It is worth
noting that in KFall, when the last check is missing, the action “Gently jump trying to reach
an object” presents false detections ranging from 99 to 109. Similarly, for “Jog normally
with turn (4 m)”, these increase from 3 to 60; for “Jog quickly with turn (4 m)”, from 5 to
76; and for “Stumble while walking”, they rise from 59 to 84. Similarly, in MMsys, when
the last check is missing, the “Near fall” sub-class, shows a score ranging from 85 to 92.
Additionally, for “Ascending and Descending a staircase”, the wrongs increase from 4 to 19.
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Table 4. Accuracy, sensitivity, specificity, and precision of our method on MMsys and KFall test
datasets, after determining the thresholds. For comparison reasons, the results from [7,29] on MMsys
and KFall, respectively, are also provided.

Accuracy Sensitivity Specificity Precision

MMsys [20]

Proposed Algorithm (from chest) 93.14% 90.40% 93.96% 81.82%
Proposed Algorithm (from thigh) 76.88% 62.28% 81.28% 50.00%

IMPACT+ POSTURE [29,45] - 87.60% - 90.90%
EvenT-ML [29] - 98.10% - 97.20%

KFall [21]
Proposed Algorithm 88.51% 91.56% 85.90% 84.79%

Rule Based [7] 84.89% 80.66% - 85.35%
CNN [7] 93.44% 93.30% - 93.43%

Table 5. Results of the proposed algorithm in each sub-class of MMsys [20], separately. The “True”
column shows how many of the detections are correct for each class on MMsys, while the “False”
represents the wrong ones. An actual accident concerns the true positive and true negative in a
fall and in a non-fall class, respectively. However, while a false corresponds to a false positive in a
non-fall class and a false negative in a fall class, some of the false in positive classes correspond to
a false positive, as the algorithm detects more than one fall in a time series where only one fall is
depicted. In the column “False-2”, we have the false detections if the last evaluation of the possible
falls is not applied by the algorithm.

Label Class Totals True False False-2

1 Standing 129 129 0 0
2 Fall forward 128 119 9 10
3 Lying 322 321 1 1
4 Sitting on a bed 256 256 0 0
5 Sitting on a chair 192 192 0 0
6 Fall backward 64 56 8 8
7 Near fall 183 98 85 92
8 Walking 127 127 0 0
9 Crouching 127 127 0 0

10 Fall right 64 57 7 7
11 Fall left 64 56 8 8
12 Real fall forward 64 59 5 5
13 Real fall backward 64 58 6 3

15 Ascending and
Descending a staircase 154 150 4 19

Table 6. Results of the proposed algorithm in each sub-class of the KFall [21] dataset, separately.
The “True” column shows how many of the detections are correct for each class, while the “False”
column represents the wrong ones. Note that an actual event is true positive and true negative in a
fall and in a non-fall class, respectively. However, while a false corresponds to a false positive for the
non-fall class and a false negative for the fall class, some of the false positive classes correspond to
false positive, as the algorithm has detected more than one fall in a time series where only one fall is
depicted. In the column “False-2”, we have the false detections if the last evaluation of the possible
falls is not applied by the algorithm.

Label Class Total True False False-2

1 Stand for 30 s 24 24 0 0

2 Stand, slowly bend the back with or without bending at knees,
tie shoe lace, and get up 117 117 0 0

3 Pick up an object from the floor 117 117 0 0
4 Gently jump (try to reach an object) 120 21 99 109

5 Stand, sit to the ground, wait a moment, and get up with
normal speed 117 104 13 13

6 Walk normally with turn (4 m) 113 113 0 0
7 Walk quickly with turn (4 m) 115 113 2 4
8 Jog normally with turn (4 m) 117 114 3 60
9 Jog quickly with turn (4 m) 113 108 5 76
10 Stumble while walking 119 60 59 84
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Table 6. Cont.

Label Class Total True False False-2

11 Sit on a chair for 30 s 24 24 0 0
12 Sit on the sofa (back is inclined to the support) for 30 s 24 24 0 0
13 Sit down to a chair normally, and get up from a chair normally 111 111 0 0
14 Sit down to a chair quickly, and get up from a chair quickly 116 107 9 9
15 Sit a moment, trying to get up, and collapse into a chair 117 36 81 81

16 Stand, sit on the sofa (back is inclined to the support), and get
up normally 114 114 0 0

17 Lie on the bed for 30 s 24 23 1 1

18 Sit a moment, lie down on the bed normally, and get up
normally 114 114 0 0

19 Sit a moment, lie down on the bed quickly, and get up quickly 111 111 0 0
20 Forward fall when trying to sit down 119 112 7 5
21 Backward fall when trying to sit down 120 117 3 3
22 lateral fall when trying to sit down 120 116 4 4
23 Forward fall when trying to get up 116 112 4 0
24 lateral fall when trying to get up 117 106 11 12
25 Forward fall while sitting, caused by fainting 118 106 12 6
26 lateral fall while sitting, caused by fainting 116 99 17 17
27 Backward fall while sitting, caused by fainting 118 115 3 3
28 Vertical(forward) fall while walking caused by fainting 115 114 1 3

29 Fall while walking, use of hands to dampen fall, caused by
fainting 114 110 4 6

30 Forward fall while walking caused by a trip 114 112 2 2
31 Forward fall while jogging caused by a trip 112 43 69 59
32 Forward fall while walking caused by a slip 120 117 3 2
33 Lateral fall while walking caused by a slip 118 114 4 7
34 Backward fall while walking caused by a slip 118 112 6 4
35 Walk upstairs and downstairs normally (5 steps) 102 101 1 1
36 Walk upstairs and downstairs quickly (5 steps) 111 98 13 17

Table 7. Distribution of false rates in MMsys [20] and KFall [21]. Each rate range depicts how many
sub-classes have the proposed algorithm, while a false rate is how many are within the corresponding
range. On 15 sub-classes, there are no wrong detections. On 16 sub-classes, the false rate is very small,
0.1–5%, and for the other 8, it is smaller than 15%. The provided method fails only in 5 sub-classes, as
the false rate is greater than 45.1%.

False Rate Ranges

0 0.1–5 5.1–10 10.1–15 45.1–50 50.1–55 60.1–65 65.1–70 80.1–85

MMsys 5 2 3 3 1 0 0 0 0
KFall 10 14 3 5 0 1 1 1 1

Total 15 16 6 8 1 1 1 1 1

5. Discussion

This work proposes an easily adjusted fall detector capable of distinguishing various
types of accidents from different daily actions. Moreover, our system is open sourced
in two programming languages, Python and C, so that it can adapt to multiple systems.
Additionally, there are no limitations in the acceleration device used since the algorithm
has already been applied in a dataset created by a 60 Hz sensor, i.e., UR, and two more i.e.,
KFall and MMsys, where 100 Hz differential sensors were utilized. Our framework is based
only on the acceleration data and the corresponding timestamps. Therefore, any device
with a three-axis acceleration input can be used without the need for other similar sensors,
e.g., gyroscope, or magnetometer. Finally, its flexibility is shown in the data length; it can
detect more than one fall in a time series of magnitudes, as depicted in Figure 5, where the
input is the whole time series and the proposed system detects seven falls.

Regarding its performance, Tables 5–7 declare that it can distinguish various types
of falls ranging from daily actions. As shown by the results, it performs highly in 45 sub-
classes out of 50. Nevertheless, we acknowledge that our algorithm presents a drawback
that lies in these five remaining sub-classes. In particular, the daily actions “Gently jump”,
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“Stumble while walking”, “Sit a moment, trying to get up, and collapse into a chair”,
and “Near fall” are mostly misclassified as falls, while the cases of “Forward fall while
jogging caused by a trip” is mostly detected as non-falls events. These four sub-classes are
incorrectly classified as positive cases because their magnitude patterns resemble those
corresponding to actual accidents. As shown in Figure 14, which illustrates false positive
detections, low magnitude values are positioned closely to high values. Consequently,
connections between lows and highs are formed, and these connections are not rejected
in the second part of the evaluation, resulting in false cases of falls. However, from the
aforementioned four sub-classes, that which requires attention is “Gently jump”, as the
other three actions are similar to a fall, so a possible alarm would be beneficial, especially
for elderly people. Regarding the “Gently jump” activity before the peak that corresponds
to an accident, another lower peak is depicted (see upper left plot of Figure 14) that could
be used by an extra check so as to reject these possible falls.

Figure 14. False positive detections. At the upper left, a false positive detection on the “Gently
jump” sub-class of KFall dataset (with permission from [21]). At the top right, a false positive on the
“Stumble while walking” sub-class of KFall. In the lower left, a false positive on the “Sit a moment,
trying to get up, and collapse into a chair” sub-class of KFall. At the bottom right, a false positive on
the “Near fall” sub-class of MMsys (with permission from [20]). Each segmental coloring indicates a
different possible fall.

Additionally, in the “Forward fall while jogging caused by a trip” sub-class, falls
are not detected because of the continuously low magnitudes as depicted in the left plot
of Figure 15. This is owed to jogging, which produces low sets that do not lead to a
connection between a low and a high for positive recognition. One solution would be to
make sub_1 smaller, from 50 to 10, aiming for generating smaller sets of high and low
cases; This way, the fall depicted in Figure 15 is detected by the algorithm as illustrated
in the right plot. Moreover, the sensitivity is increased to 96.06% at the test set of KFall
and detects all the falls in “Forward fall while jogging caused by a trip”. However, the
specificity is totally decreased, to 70.94%. To overcome this conflict, a better approach
would be to consider the total of lows and highs included in a set and create one more
check. Moreover, our method performs well when considering the “False” and “False-2”
columns of Tables 5 and 6. In particular, the last check corrects many FPs without greatly
affecting the algorithm’s outcome when detecting actual events.
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Figure 15. False negative and true positive detections. At the left, a false negative detection on the
“Forward fall while jogging caused by a trip” sub-class of KFall (with permission from [21]). The
blue dots correspond to the continuously low values of magnitudes which are responsible for not
establishing possible falls. At the right, the fall (orange colored segment) is detected by the algorithm
as the sub_1 threshold changes from 50 to 10.

Finally, as far as the possible disturbance on the signals is concerned, it is worth
noting that the proposed algorithm utilizes both the low and high values of magnitudes.
Consequently, instantaneous incorrect measurements are unlikely to significantly affect the
algorithm’s performance. However, it is important to acknowledge that further research
is required in this area, as the used datasets do not include data with disturbance on
the signals.

6. Conclusions and Future Work

This article proposes a heuristic-based algorithm for detecting falls, using as input the
magnitudes of the x, y, and z axes provided by an accelerometer. When the incoming data
arrive, our pipeline initially detects a set of possible events and subsequently evaluates
them via three checks, aiming to determine the final decisions. The system is designed
to be independent of both the sensor’s operating frequency and the size of the received
input, while it also can detect multiple falls in long time series without the necessity
of separating the input into smaller windows. Its effectiveness is evaluated, as high
sensitivities are reached on MMsys and KFall public datasets, reaching 90.40% and 91.56%
scores, respectively. In addition, its specificity scores of 93.96% and 85.90% demonstrate
further its ability to distinguish falls from daily actions. Our future plans include the
development of a generalized buffer, capable of dynamically adjusting the algorithm’s
behavior through the thresholds’ modification. This way, we intend to allow the system to
be balanced between the two classes or be more sensitive to either falls or non-falls, thus
enabling users to adapt its usage according to specific system requirements and providing
a tailored approach suiting distinct application needs.
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