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Abstract
As a mobile robot, e.g., an aerial, underwater, or ground-moving vehicle, navigates 
through an unknown environment, it has to construct a map of its surroundings 
and simultaneously estimate its pose within this map. This technique is widely 
known in the robotics community as simultaneous localization and mapping 
(SLAM). During SLAM, a fundamental feature is loops’ detection, i.e., areas ear-
lier visited by the robot, allowing consistent map generation. Due to this reason, 
a place recognizer is adopted, which aims to associate the current robot’s envi-
ronment observation with one belonging in the map. In SLAM, visual place rec-
ognition formulates a solution, permitting loops’ detection using only the scene’s 
appearance. The main components of such a framework’s structure are the image 
processing module, the map, and the belief generator. In this chapter, the reader is 
initially familiarized with each part while several visual place recognition frame-
works paradigms follow. The evaluation steps for measuring the system’s per-
formance, including the most popular metrics and datasets, are also presented. 
Finally, their experimental results are discussed.

Keywords: Mobile robot, aerial, underwater, moving vehicle, SLAM, sensory 
data, visual recognition, image processing

4.1 Introduction

As a wide range of applications, such as search and rescue [15, 21, 25, 30, 84], 
space [20, 49], inspection [22, 23, 95] and underwater exploration [41, 66, 
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48 Autonomous Vehicles Volume 2

103], demand autonomous robots, accurate navigation is more than neces-
sary for an intelligent system to accomplish its assigned tasks. Simultaneous 
localization and mapping (SLAM) [69], i.e., a robot’s capability to incremen-
tally construct a map of its working environment and subsequently estimate 
its position in it, has become the core of autonomous navigation over the last 
three decades when global positioning information is missing [24]. However, 
drift is inevitably accumulated over time, given the sensor signals’ noise and 
the absence of position measurements. Hence, SLAM needs to identify when 
the robot revisits a previously traversed location and recall it. Thus, the system’s 
drift error and uncertainty regarding the estimated position and orientation 
(pose) can be bounded and rectified, allowing consistent map generation.

This process is widely known as loop closure detection and 
is achieved via a place recognition pipeline responsible for 
associating the incoming sensory data (query) with the map 
(database).

Several techniques were used for mapping the operating environment 
in the early years, such as range and bearing sensors, viz., lasers, radars, 
and sonars. However, due to the available computational power, which 
has increased over the late years, and the findings of how animals navigate 
using vision [71], mapping was pushed from other sensors to vision-based 
ones [65]. Nowadays, such cameras are successfully utilized for mapping 
trajectories of up to 1000 km [40]. Beyond the sensor’s low cost and its 
applicability to various mobile platforms, especially the ones with restricted 
computational abilities, e.g., unmanned aerial vehicles (UAVs) [61, 100], 
the main reason for its utilization is related to the rich textural informa-
tion presented in images [46, 47], which provide a significant advantage 
over the other sensors permitting to capture the environment’s appearance 
with high distinctiveness effectively [38]. Not surprisingly, modern robotic 

Figure 4.1 A representative example of a pose graph visual place recognition system in a 
simultaneous localization and mapping framework. As the global positioning information 
is not available, the robot generates an uncertain estimation about its position (left). When 
loops are detected in the traversed route, the internal map is rectified, allowing consistent 
map generation (right).
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Localization and Mapping of Visual Places 49

navigation systems are based on visual place recognition algorithms to 
detect loop closures [10, 11, 14, 28, 90, 93, 96] (see Figure 4.1).

As these methods seek a known location in the traversed route through 
the incoming visual information, at this point, it is reasonable to distinguish 
visual place recognition from image classification and image retrieval. More 
specifically, the former concerns the problem of categorizing a query image 
into a known class, while the latter tries to detect the most identical instances 
of the same class in a database. On the contrary, visual place recognition 
searches for similar images to the recent scene, which may belong in the same 
scene category but come from different places on the map. Hence, image 
processing holds a vital role in the system’s performance since visual repre-
sentations for classification tasks may not perform accordingly for place rec-
ognition and vice versa. Furthermore, as image processing efficiency heavily 
affects the system’s confidence, mapping and matching techniques also play 
an important role in the final decision. In general, a visual place recognition 
system contains three key components [57]:

• An image processing module for interpreting the camera data.
• A map that represents the robot’s knowledge about the 

world.
• A belief generator that decides if the robot navigates in a 

familiar way or not. Its decision is based on combining the 
incoming sensory data and the map.

In this chapter, we approach the construction of such a system. We also 
present several pipelines, including paradigms that use different image pro-
cessing, mapping, and matching approaches. Recent advances are illustrated 
through the exemplar systems. After comprehending the chapter, the reader 
will know how to formulate a custom visual place recognition framework.

4.2 The Structure for a Visual Place Recognition 
System

With the aim to achieve visual place recognition, a workflow of processes 
is executed as summarized in the schematic of Figure 4.2. The pipeline 
comprises three parts: i) the image processing of the incoming visual data, 
ii) the trajectory mapping, and iii) the decision making through a belief 
generator. Lastly, as the place recognition for SLAM has to work online, it 
needs to update the map during navigation. Each part is described in detail 
in the following sections.
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50 Autonomous Vehicles Volume 2

4.2.1 Image Processing

A visual place recognition framework has to detect earlier visited areas by 
employing only the visual data captured through the sensor; the perceived 
images have to be interpreted robustly, aiming for an informatively built map.

Rather than working directly with image pixels, most meth-
ods use feature vectors extracted from the image processing 
module to describe the traversed route.

This way, each database image is represented through global (based on 
the entire image) or local (based on a region-of-interest) features.

4.2.1.1 Global Descriptor Extraction

Studies have demonstrated that humans rapidly categorize a scene using 
just the coarse global information or “gist” of a scene [17]. Methods based 
on global feature extractors describe the appearance of the image holisti-
cally via a single vector [5, 44, 50, 54, 72, 86]. Their main advantages are 
the compact representation and computational efficiency, allowing lower 
storage consumption and faster indexing while querying the database. 
However, their main disadvantage is the inability to handle occlusions 
since the geometrical information is not provided.

Visual data

Image

Map

Map update

Image processing Belief generator Confidence

Place recognition decision

Trained data

Visual bag of words

Figure 4.2 Schematic of a visual place recognition system. As the incoming sensory 
measurement enters the pipeline, the image processing module extracts the corresponding 
visual representation, i.e., the global or local description vectors. The robot’s mapping, 
either single image- or sequence of images-based, is stored in the database, while the final 
part of the pipeline, viz., the belief generation module, outputs a confidence regarding 
whether or not the robot revisits an already mapped location.
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Localization and Mapping of Visual Places 51

Aiming to facilitate the reader’s understanding, a global descriptor 
adopted by a wide range of techniques is presented in this chapter. This 
method is based on image histograms. Different forms, e.g., color histo-
grams [48, 97], histogram-of-oriented-gradients (HOG) [79], or com-
posed receptive field histograms [58], are used for visual place recognition; 
however, HOG, which was initially designed for object detection tasks 
[78], is the most frequently selected. Its structure is based on calculating 
every pixel’s gradient and subsequently creating a histogram according to 
the results. In Figure 4.3, an illustrative example is given.

4.2.1.2 Local Descriptors Extraction

On the other hand, local features have shown significant advantages com-
pared to the global nature of the previous category. These features are 
extracted by detecting and describing point-of-interest in an image [1, 13, 
16, 53, 56, 75, 76], and they have shown robustness against various image 
deformations that a freely moving camera may induce, such as scale, rota-
tion, and partial occlusions. However, their extraction process constitutes 
the bottleneck for any visual place recognition system. This is due to the 
multitude of possible detections, which can reach the range of thousands, 
especially in highly textured environments [96]. Therefore, the robotics 
community has adopted more sophisticated solutions that quantize the 
corresponding descriptors’ space to address this redundancy, yielding the 
widely known visual bag of words model [80]. This technique originates 
from text retrieval [6] tasks and compresses the otherwise meaningful 
information while permitting faster indexing while searching the database. 
This data representation is referred to as visual vocabulary consisting of a 
specific quantity of visual words. According to the vocabulary generation, 
place recognition frameworks are distinguished into i) pre-trained and 

Incoming image Histogram of
oriented gradients

(HOG)

Histogram of
oriented gradients

(HOG)
features

HOG feature vector

Block 1

Block N

Block 2 ... Block N

Figure 4.3 A histogram of oriented gradients (HOG) feature vector extracted from an 
incoming camera measurement. Image’s local shape is encoded generating this way a 1 × N 
vector, where N is the HOG feature-length that represents the corresponding visual data.
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52 Autonomous Vehicles Volume 2

ii) online or incremental approaches. Methods that utilize learning data [7, 
10–12, 28, 34, 63, 67, 73, 83], i.e., quantizing a sample of local descriptors 
through a clustering technique [60], belong to the first category, whereas 
algorithms that generate their visual vocabulary during navigation belong 
to the second one [4, 31, 43, 45, 52, 70, 89, 91, 92, 101].

Regarding the first category, when the incoming camera measurement 
enters the image processing module, a visual word is assigned to each 
extracted descriptor, i.e., local features are classified according to the avail-
able vocabulary. This outputs a descriptive histogram vector which indi-
cates the words appearing in each frame. An overview of this pipeline is 
outlined in Figure 4.4. Nevertheless, while pre-trained methods are able to 
achieve high performances under computational constraints, their success 
is highly dependent on their visual vocabulary and, in turn, on the qual-
ity of the data used during training. Following this realization, to avoid 
a performance failure, incremental approaches that “learn” the working 
environment online are developed. In most cases, these pipelines cluster 
consecutive local descriptors via different features’ matching techniques 
during navigation.

4.2.2 Map

In every visual place recognition system, map representation constitutes a 
vital functionality that refers to the model followed for “remembering” the 
traversed route. Through how the robot maps its route, appearance-based 
systems are differentiated into single image- and sequence of images-based. 
Most of the time, the scenario with which the robot would deal is the one 
that determines the model of the map, e.g., indoors environments with 
prolonged trajectory segments, such as corridors, provide better results 
when sequence mapping is adopted.

Speeded up robust features Description vectors

Feature vector

7 9 5 6 8

Descriptors-to-visual words association
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Visual vocabulary
Approximate nearest neighbor
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1 2 3 4 5 ...
...
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Visual word index

Figure 4.4 An example of an image representation based on the offline formulation of 
a pre-trained visual vocabulary model. Speeded up robust features [16] are extracted 
from regions-of-interest in the incoming image, and subsequently, their descriptors are 
associated with the most similar entries in the vocabulary. The output 1 × W vector, where 
W is the vocabulary’s size, denotes a descriptive histogram of the visual words’ count.
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Localization and Mapping of Visual Places 53

4.2.2.1 Single Image-Based

Approaches that belong to the first category use only the latest image to 
seek candidate loop closure detections. However, even if an instant view is 
utilized during the query, single image-based techniques are divided into 
i) dense and ii) hierarchical mapping.

(i) Dense: During dense map representation, each incoming 
visual sensory data is associated with a distinct location in 
the trajectory [28, 96, 102]. When the most recent (query) 
image is captured, the database is exhaustively searched 
to identify the most similar entry. As shown in Figure 4.5 
(left), the query is associated with image 3 after an exhaus-
tive comparison to the rest of the views is performed.

(ii) Hierarchical: Direct feature matching can be time- 
consuming since an exhaustive search can significantly 
burden the computational complexity. Even in the case of 
global descriptors, this problem becomes intractable for 
long trajectories. As an efficient solution, a hierarchical 
structure to the trajectory mapping can be implemented 
[39]. This technique is discovered in the mammalian brain, 
both in the hippocampus’s grid cells [82] and the visual 
cortex’s pathway [51]. By clustering the camera’s stream 
into tractable groups, i.e., images exhibiting time or con-
tent proximity, a hierarchical structure of places is formed 
[35, 89]. When querying the database images, scalability is 
achieved by inspecting only the most promising location, 
as depicted in Figure 4.5 (right).

Image

Query

1 2 3 4

t

Image

Place

Query

1 2 3 4

1

t

Figure 4.5 In single image-based trajectory mapping, two categories are presented: dense 
and hierarchical. The first category uses distinct data to represent the traversed path (left), 
while the second groups images with similar visual content into a common representation 
(right). During database querying, the computational complexity is higher in approaches 
belonging to the first category, while methods in the second one tackle this issue by only 
inspecting the most promising candidates.
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54 Autonomous Vehicles Volume 2

4.2.2.2 Sequence of Images-Based

Methods of the second category create sub-maps, i.e., groups of single 
images, along the navigation course [8, 10, 11, 34, 83, 88, 90, 93, 94, 98]. 
These submaps, also referred to as sequences or places, are described by 
common data. For instance, when a pre-trained visual bag of words is uti-
lized, description is achieved by a common visual words histogram [12] in 
which words from the total of image members are voting. However, during 
the query process, the latest sequence is utilized to search the database, in 
contrast to single image-based techniques, where querying is implemented 
using only the most recent one. As illustrated in Figure 4.6, images belong-
ing to place Q are associated with the ones of place 1, insomuch as the 
identification between places is achieved.

4.2.3 Belief Generator

Given a query view, a visual place recognizer has to determine if the 
location the incoming view represents can be found in the database and 
subsequently match the image with robustness against viewpoint and 
conditional variations under runtime and memory constraints. Aiming 
to decide whether or not the robot navigates in a previously seen area, a 
similarity score among the query and the database is computed. The belief 
generator performs data comparisons depending on how the incoming 
images are processed to gain the necessary confidence. The most common 
techniques are discussed in this section. Moreover, to manage the chal-
lenges related to the loops’ detection in cases of perceptual aliasing, both 
temporal (loop closures will only be considered if others exist nearby) and 

Image

Place

Query place

Query t

Q

1

1 2 3 4

Figure 4.6 Sequence of images-based mapping divides the trajectory into sub-maps. In 
contrast to the hierarchical approach, images are grouped into places; however, the latest 
generated sequence is used for querying the database. When a proper match is identified, 
an image-to-image association is then performed in a coarse-to-fine manner.
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Localization and Mapping of Visual Places 55

geometric (a valid transformation has to be calculated between the cho-
sen pair) constraints are considered. Then, the belief generator’s output is 
organized in a square matrix, like the one presented in Figure 4.7, whose 
off-diagonal non-zero elements denote the corresponding loops identified 
by the system.

4.2.3.1 Pixel-Wise Similarity

The most naïve solution based on pixel-wise comparisons is the sum of 
absolute differences (SAD):

 
D

R R
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x y x y

1 0 0
, ,

 
(4.1)

where Rx and Ry denote the dimensions of the images, while ρ rep-
resents each pixel’s intensity value. This technique is selected mainly 
when raw sensory data is used in the system, avoiding the widely used 
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Figure 4.7 Loop closure detection matrix provided by a visual place recognition system 
for a dataset containing 2,761 images. The loop closure events are illustrated by the 
off-diagonal elements (blue lines). The system’s performance is measured based on this 
information.
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56 Autonomous Vehicles Volume 2

image processing methods. It is a computationally costly process that 
is unable to cope with rotation and scale variations. However, using a 
downsampling scheme and sequence of images-based mapping [64], 
this method can detect loops with high efficiency [55, 79, 85, 90, 93, 
94, 99]. 

4.2.3.2 Euclidean or Cosine Distance

Regarding images represented as points or vectors in the feature space, the 
most common distances to compare are the Euclidean and the cosine dis-
tance, respectively: 

 
d p q vt

q pEucliddean i
n

i i
,

)( )1

2  

(4.2)

 

d p q p q
kpkkqlcosine , 1

 

(4.3)

In the above, d denotes the visual distance among the query Iq and the 
database instances Ip, while q¯ and p¯ are their description vector representa-
tions. Evidently, the smaller the distance, the higher the similarity of the 
candidate pair [2, 3, 9, 10–12, 28, 29, 34, 42].

4.2.3.3 Vote Density

Besides, when local extractors are adopted for image or place represen-
tation, loop closures are highlighted via voting schemes [26, 36, 59, 89, 
91, 96]. The query’s local detectors distribute votes in the database to 
their nearest neighbors, i.e., the descriptors presenting the minimum 
distance. After this polling, a voting score is received that is used to 
evaluate the similarity (see Figure 4.8). A naïve approach is to count 
the number of votes and apply heuristic normalization [26]; yet, in 
most cases, thresholding the votes’ density is not intuitive and varies 
depending on the environment. Probabilistic voting schemes, such as 
the binomial density function [36], also consider the total of database’s 
accumulated votes to calculate a score that points to pre-visited loca-
tions [89, 91, 96].
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Localization and Mapping of Visual Places 57

4.2.3.4 Temporal Consistency

Unlike classification tasks or image retrieval, during robot navigation, 
visual data are captured sequentially. As the detection of several fault-free 
loop closures is the prime goal of contemporary robots, missing a few 
identifications is minor since temporal continuity affords many chances 
to retrieve them in the frames following. This characteristic is exploited in 
every sequence of images-based mapping technique, while for single image-
based methods, temporal consistency checks are adopted. In such a scheme, 
multiple matching image pairs need to be identified before accepting a loop 
closure event [2, 45, 77, 89, 96]. Another line of approaches for incorporat-
ing temporal information utilizes more sophisticated techniques based on 
probabilistic models, such as the Bayes filter [4, 29, 35, 52, 68, 92].

4.2.3.5 Geometrical Verification

An optional step before a visual place recognition pipeline accepts a loop 
closing match is the selected pair’s geometrical verification when data asso-
ciation is performed [3, 4, 19, 34, 35, 62, 74, 89, 91, 96]. This process is 
based on the local features’ spatial information, and it is achieved through 
the computation of a fundamental/essential matrix or using epipolar con-
straints. As a result, approaches that use a single vector for representing 
the incoming images (either through global descriptors or visual word 
histograms), ignoring the scene’s geometry, have to extract local features 

Votes matrix

500

1000

1500

2000

2500

Q
ue

ry
 in

di
ce

s

500 1000 1500 2000 2500
Database indices

Figure 4.8 Votes matrix as provided by a visual place recognition system for a dataset 
including 2,761 images. As shown by the off-diagonal lines, the votes’ density is higher in 
regions that correspond to loop closure events.
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58 Autonomous Vehicles Volume 2

to perform this check additionally. Typically, geometrical verification is 
performed using a variant of RANSAC (random sample consensus [32]) 
and accepts a loop closure event only if a minimum number of local point 
inliers is identified. Otherwise, the respective candidate is rejected.

4.3 Evaluation

In this section, the protocol of evaluation is presented in detail, based on 
which the estimated parameters of a custom visual place recognition sys-
tem are assessed. The main components needed for measuring a system’s 
performance include the utilized datasets, their respective ground truth, 
and the metrics typically used to assess the performance. The following 
subsections describe each of these parts.

4.3.1 Ground Truth

Ground truth is typically formed in the shape of a binary matrix of equal 
dimensions with the similarity one, highlighting the real loop closure events 
occurring in the dataset. In most cases, this information is provided along 
with the dataset and indicates pairs of images that capture the same area. 
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Figure 4.9 Ground truth matrix for a dataset containing 2,761 images. As depicted, 
the off-diagonal elements (blue lines) indicate the actual loop closure events existing 
in the trajectory. Detections that fall on the ground truth are the true-positives, while 
identifications that fall outside this area are false-positives. Using this information, the 
system’s performance is measured.
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Localization and Mapping of Visual Places 59

The matrix’s columns and rows depict images at distinct time-stamps, while 
its boolean data are set to 1 to denote the existence of a loop event (yi,j = 1) 
and 0 otherwise (yi,j = 0). An illustrative example is given in Figure 4.9. 

Ground truth data are combined with the similarity matrix 
extracted through the recognition process to measure the 
system’s performance.

4.3.2 Datasets

Publicly available datasets are used in most experiments aiming to provide 
a common performance baseline among different approaches while also 
covering a wide range of visual sensory properties, e.g., image resolution, 
frequency, and robot’s velocity. The evaluation of a method is administered 
via several tests on different datasets, aiming to prove its performance 
capability. Although various cases exist in the literature, the most acknowl-
edged and widely used are presented for this chapter. The selected data-
set present outdoor, dynamic, and static environments containing urban 
views at their most. A summary of each one is provided in Table 4.1, while 
Figure 4.10 contains some representative samples. Two out of the five data-
sets come from the KITTI visual suite [37], mainly consisting of trees, cars, 
and houses. The incoming visual stream is registered through the mounted 
stereo camera system of a forward-moving car providing accurate odom-
etry information along with high-resolution data (image’s size and camera 
frequency). Sequences 00 and 05 are selected since they contain the most 
notable loop examples. Malaga 2009 Parking6L has been recorded by the 
vision system of an electric platform, while New College and City Centre 
via a mobile robot. The perceived data represent a university campus 

Table 4.1 Description of the most commonly used benchmark datasets for 
evaluating visual place recognition techniques within simultaneous localization 
and mapping.

Dataset label
Camera 

position
Image 

resolution Frequency

[37] KITTI vision suite (00, 05) Frontal 1241 × 376 10 Hz

[18] Malaga 2009 Parking 6L Frontal 1024 × 768 7.5 Hz

[81] New College Frontal 512 × 384 20 Hz

[28] City Centre Lateral 1024 × 768 7 Hz
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60 Autonomous Vehicles Volume 2

parking lot containing cars and trees, while New College and City Centre 
depict mostly buildings and pedestrians. They are incorporated since they 
refer to significantly different operational conditions (e.g., camera orien-
tation, resolution, frequency, traveled distance) and plenty of loop closure 
events. However, for New College, the incoming camera measurements are 
resampled to 1 Hz, from the initial 20 Hz, owing to the low velocity of the 
robot and the high camera frequency. This way, the characteristics of mod-
ern robotic platforms are simulated more accurately.

4.3.3 Evaluation Metrics

The evaluation metrics presented in this chapter are the most frequent in 
the literature for visual place recognition. The precision and recall metrics 
against the ground truth information are utilized to assess an algorithm’s 
performance on selected datasets. Precision is defined as the ratio between 
accurately identified loop closure events (true-positives) and the total of 
the system’s detections:

 
Precision True-positive

positives False-positives
True

  
(4.4)

More specifically, a true-positive is indicated by the ground truth infor-
mation and represents matches between actually loop closing samples. On 
the contrary, a false-positive match characterizes an image pair association 
not included in the ground truth. Besides, recall is defined as the num-
ber of true-positives over the sum of loop closure events included in the 
ground truth:

 
Recall True positives

positives False-negatives
True

  
(4.5)

KITTI (05) Malaga 2009 parking 6L New College City Centre

Figure 4.10 Example images of the presented datasets. From left to right: KITTI vision 
suite (05) [37], Malaga 2009 parking 6L [18], New College [81], and City Centre [28].

 10.1002/9781394152636.ch4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781394152636.ch4 by U

niversity O
f T

hrace, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Localization and Mapping of Visual Places 61

False-negative detections represent the locations that ought to have 
been recognized, but the method failed to.

 The RP100 metric

For developing a genuinely autonomous robot capable of 
generating consistent maps, visual place recognition mech-
anisms should operate at 100% precision since a single erro-
neous detection can cause a total failure for SLAM.

Therefore, for measuring the performance of a visual place recognition 
system, the most common indicator is the highest achieved recall at 100% 
precision (RP100), which denotes the highest possible recall score with no 
false-positive detections.

4.4 Paradigms

In this section, paradigms of visual place recognition are shown, and sev-
eral solutions are introduced. Then, dealing with all the aspects of a visual 
place recognition system, e.g., different image processing techniques, map-
ping, and belief generators, four exemplar systems are presented. The first 
two examples address the problem by utilizing a pre-trained visual bag of 
words model and sequence of images-based mapping. Incremental vocab-
ularies for map building are included in the subsequent systems. A single 
image-based and hierarchical map is presented in the third example, while 
a dense approach follows in the last one.

4.4.1 Sequence of Images-Based Visual Word Histograms

This paradigm describes a representative pipeline [10] for sequence of 
images-based visual place recognition, which combines appearance infor-
mation from multiple frames to describe the entire content of a physical 
scene. During an autonomous mission, the input camera measurements 
are clustered into groups based on a metric distance threshold of 5 meters 
on the traversed route. Each member of a produced image-sequence is 
processed to extract local feature descriptors, which are then converted 
into their corresponding visual words from a pre-trained vocabulary of 
W entries. These words are accumulated into a single visual word histo-
gram of size W capable of describing the total of the sequence’s respec-
tive scene. Furthermore, the same words are also used to create single 
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62 Autonomous Vehicles Volume 2

image histograms and characterize each individual member. Figure 4.11 
depicts procedure mentioned above for producing descriptive vectors for 
image-sequences and single instances. 

In order to match the individual sequences, a metric based on L2-norm 
is used. More specifically, similarity is measured based on the L2-score 
between a query (Sq) and a database (Sd) sequence: 

 

L VS V S
VS

q kV S k

V S

VS
q d q

d

d

2 1 0 5
2 22

, .

 

(4.6)

In the above, k...k2 denotes the L2-norm, which in turn implies that the 
L2-scores are in the [0, 1] range, with higher values being associated with 
sequence pairs that correspond to visually similar scenes. As the trajectory 
grows, the computed values can be arranged to form a similarity matrix M 
incrementally, similar to the one presented in Figure 4.12a. This matrix is 
symmetric with each element (i, j) containing a corresponding normalized 
score [34]: 

Feature descriptors from
the image-members

of a formulated sequence

Visual
vocabulary

Sequence
histogram

Image
histograms

v1 v2 v3 ... ... ...

. . .

. . .

. . .

...

. . .
...

. . .

... ... ... ... vw-2 vw-1 vw

v1 v2 v3 ... ... ... ... ... ... ... vw-2 vw-1 vw

v1 v2 v3 ... ... ... ... ... ... ... vw-2 vw-1 vw

v1 v2 v3 ... ... ... ... ... ... ... vw-2 vw-1 vw

Figure 4.11 Formulating descriptive histograms based on the visual words of a pre-
trained vocabulary for image-sequences and single instances.
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L V S VS L V S VS
L V S V S

i j i j

i i

2 2
2

0

1

,
,  

(4.7)

M is post-processed by a convolutional filter to further enhance entries 
with high similarity values that jointly escalate among its two directions. 
The respective kernel is defined as follows:

 

K
0 5 0 5 0

0 5 1 0 5
0 0 5 0 5

. .
. .

. .
 

(4.8)

and it can be applied incrementally, while new camera measurements 
are obtained and M is filled with new L20-scoring values. The result-
ing filtered matrix M0 is shown in Figure 4.12b. Finally, M0 values that 
overpass a predefined threshold k = 0.32 are considered to represent 
sequence pairs that contain loop closing image candidates. Finally, 
image-to-image associations are achieved by identifying the highest 
L2-scores among the respective visual word histograms of the individ-
ual image-members.

(a) Un�ltered similarity matrix M. (b) Filtered similarity matrix M0.

100
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Figure 4.12 The proposed convolutional filter’s impact on a sequence of images-based 
similarity matrix. Filtered elements which correspond to system’s loop closure events are 
highlighted and can be straightforwardly separated from the ones which are not loop 
closures.
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64 Autonomous Vehicles Volume 2

4.4.2 Dynamic Sequence Segmentation

A significant drawback of the approach mentioned above is the lack of a 
dynamic procedure to segment the traversed route effectively. More specif-
ically, the utilization of fixed distance intervals does not guarantee that the 
whole visual information of any two sequences will overlap, although they 
conform to the exact location. This fact is especially highlighted when con-
sidering two sequences that include turning points, like the ones depicted 
in Figure 4.13a. If that is the case, each pair of actually matching sequences 
includes several highly dissimilar visual entries, inevitably decreasing the 
corresponding similarity values. With the aim to address this inconsis-
tency, the method in [12] implements traversed route’s dynamic segmen-
tation based on the visual consistency of the observed environment. This 
way, sequence members are grouped using the information provided by 
their visual content, thus providing well-defined sequence boundaries (see 
Figure 4.13b).

The technique followed utilizes the received visual words’ variance. 
During the formulation of each individual sequence, a binary vector vb 
is retained to monitor the already observed visual words. This vector has 
the same length with the visual vocabulary, with each entry denoting 
the absence (0) or existence (1) of the corresponding visual word in the 
group of images. As new observations are processed, the extracted local 

(a) Image-sequences formulated by making 
use of a fixed traversed length for segmenting 
the trajectory. Sequence pairs contain some 
significantly unrelated images

(b) Sequence segmentation based on 
the visual word variance among successive 
images. Sequences from the same area are 
well-aligned resulting in visual word histograms
with similar structure.  

Figure 4.13 Highlighting the importance of similarity consistence sequence segmentation. 
Color-coding represents different sequences in which camera poses and image instances 
belong to.
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Localization and Mapping of Visual Places 65

descriptors are mapped into their respective visual words. By checking 
their index with vb, words are assigned with a label N, if they are seen for 
the first time, or O otherwise. Therefore, a visual word variance metric is 
computed as σb = N/(N + O), marking the current sequence’s completion 
and the initialization of a new one each time σb > 0.75. Note that N and O 
represent the visual words’ number marked as N and O, respectively. When 
a new sequence is signaled, vector vb is set to zero, and the same process 
follows to the next ones. In cases of σb ≤ 0.75, vb is updated with the visual 
words marked as N, and the following camera frame is noted as member 
of the ongoing sequence. 

In addition to the above mechanism for dynamically segmenting 
the executed trajectory into intervals with consistent visual cues, the 
method in [12] additionally improves the similarity matrix’s filtering 
approach by producing a trained convolutional kernel. Avoiding the 
manual selection of the filter’s values, a cost-function minimization 
scheme is designed by utilizing the ground truth information from 
loop closure detection datasets. In specific, a multivariate polynomial 
is defined as  θ = [θ0, θ1, …, θ9]

T, with which m · θ ≥ 0 denoting the 
existence of a loop closure event. In the above, m= [1, m1, ..., m9] rep-
resents the normalized values of a 3 × 3 sub-matrix from M, which are 
rearranged into a feature vector format. The coefficients of θ from θ1 to 
θ9 represent the convolutional kernel’s values, while k0 = −θ0 is treated as 
the loop closure detection threshold. The cost-function is minimized 
under the logistic regression classifier [27]: 

 θ = argmin J(θ),  (4.9)
 θ

 

J
l

y logh m y log h m
i

l

tr
i

tr
i

tr
i

tr
i1 1 1

1

, ,
 

(4.10)

 
m

m
, 1

1
h

e  

(4.11)

and it is solved through gradient-descent. In the above, ytr
(i) and mtr

(i) 
represent a single training sample and its corresponding ground truth, 
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66 Autonomous Vehicles Volume 2

respectively, and l is the (i) available learning set’s size. Given that two 
classes are required, ytr= 1 is assigned (i) to the ground truth elements 
that correspond to a loop closure event and ytr = 0 otherwise. The result-
ing θ can be converted back to a square 3 × 3 filtering kernel with the 
following form:

 

K 0

2 31 0 57 1 88
0 41 2 19 0 75
1 83 0 34 2 15

. . .
. . .
. . .

 

(4.12)

with k0 = −θ0 = 3.5.

4.4.3 Hierarchical Mapping Through an Incremental Visual 
Vocabulary

Most pre-trained visual word methods, like the previous ones, provide 
high execution frequency while searching the database and computing 
similarities. Although such systems have proved robust when dealing 
with loop closures, their performance drops when the robot navigates to 
a dissimilar environment to the training images since the visual vocabu-
lary is generated a priori. Aiming to overcome this weakness, incremen-
tal mapping is used that constructs the visual vocabulary in an online 
manner [89]. These techniques typically induce complex computations 
due to their incremental nature and the exhaustive search during data-
base querying; therefore, hierarchical methods for faster indexing are 
adopted. 

During such a process, a feature matching coherency check determines 
new places, according to which segmentation to the incoming image stream 
is achieved when the last n images’ local descriptors correlation stops exist-
ing. This way, image frames demonstrating content and time proximity are 
grouped, resulting in sequences of images with common visual informa-
tion. Subsequently, a clustering method based on the growing neural gas 
[33] is executed over the gathered descriptors producing the visual words 
corresponding to each specific area.

As opposed to the pre-trained approaches, where visual word histo-
gram comparisons are implemented, methods based on incremental maps, 
such as the one presented, utilize a voting scheme. During a query, local 
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Localization and Mapping of Visual Places 67

descriptors, extracted from the recent image, search for the most identical 
visual words in the generated database via the nearest neighbor scheme. 
Hence, each descriptor-to-visual word association corresponds to a new 
vote for the place. When the places’ pooling is finished, a binomial density 
function determines the similarity scores through a probabilistic model 
[36]. The place which satisfies the loop closure probability threshold is 
selected as the candidate one and is furthermore searched for image-to-
image correspondences (Figure 4.14). Finally, the chosen image has to 
satisfy a temporal constraint before accepted, as well as a geometrical ver-
ification through RANSAC.

4.4.4 Bag of Tracked Words for Incremental Visual Place 
Recognition

Unlike the previous one, the second incrementally based vocabulary map-
ping system uses a dense representation for environment confronted by 
the robot. However, since a feature matching technique would be imprac-
tical if applied at every incoming image frame, the vocabulary is generated 
via a point tracking technique [91].

P

i

P+1

Query

Database

i

P

P+1

P+2

Local descriptor 1
Local descriptor 2
Local descriptor k

Visual word 1
Visual word 2
Visual word n

Visual word n+1
Visual word n+2
Visual word m

Visual word m+1
Visual word m+2
Visual word x

Candidate place

i

i

i

Votes

Voting score

Probability score

P P+2 P++P+1

P P+2 P++P+1

P P+2 P++P+1

Figure 4.14 The query process of a hierarchical visual place recognition method. As the 
incoming image stream is processed, votes are distributed to places based on the local-
descriptors-to-visual-words association. Subsequently, the candidate place is indicated 
through a binomial distribution function over the accumulated votes.
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68 Autonomous Vehicles Volume 2

As shown in Figure 4.15, when new visual sensory data are processed, 
local points are detected and described. Subsequently, these points are 
tracked in the following robot view through the Kanade-Lucas-Tomasi 
(KLT) tracker [87]. The relevant feature is selected based on a guided- 
feature-detection technique that searches for the most similar descriptor 
located near the tracked point. Points that lose track during navigation are 
transformed into visual words, referred to as tracked words, while their 
total constitutes the bag of tracked words. These new elements are assigned 
to the traversed map at the location from which they are originated. 

Using the previous example’s belief generator, a voting scheme deter-
mines the pre-visited locations. When a query image is handled, its 
descriptors distribute votes into their nearest-neighboring database of 

Query location Locations’ number of votes0
th

Pr
ob

ab
ili

ty Binomial Density Function

Expected value

Locations0
Vo

te
s

Votes’ Distribution

Image’s tracked descriptors
search for the nearest

neighboring visual elements

Indexes

BAG OF TRACKED WORDS

Tracked Word
Tracked Word
Tracked Word
Tracked Word
Tracked Word
Tracked Word
Tracked Word
Tracked Word

Figure 4.15 In the course of a query, local descriptors distribute votes to the locations in 
the database where the nearest neighboring tracked words are formed. The colored blocks 
depict the votes cast by different tracked words. Subsequently, the candidate locations are 
selected if a loop closure threshold th is satisfied applied on the binomial density function’s 
probabilistic score (highlighted red area).
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tracked words. A binomial probability density function converts the accu-
mulated votes into probabilistic scores, thus, indicating the candidate loop 
closures. Finally, a geometrical verification step through RANSAC ensures 
the robustness of the visual place recognition system.

4.5 Experimental Results

The pipelines introduced have been implemented and tested on the five 
datasets presented in Section 4.2. However, it is noteworthy that as the 
incoming sensory information in every dataset comes from a stereo cam-
era rig, only the monocular stream is utilized. By varying the loop clo-
sure decision threshold, the precision and recall curves for the KITTI (00) 
dataset are shown in Figure 4.16. For the reader’s convenience, the highest 
recall metrics at 100% precision are indicated in circles. In addition, the 
highest achieved scores for the other datasets are also presented in Table 
4.2 intending for illustrating the full potential for each method.

KITTI (00)
1
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Figure 4.16 Precision and recall curves for the presented examples, which are monitored 
by altering the paradigms’ loop closure detection thresholds. Experiments are performed 
on the KITTI vision suite (00). Color markers (cycles) on the top of the graphs show the 
highest recall for perfect precision (RP100).
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70 Autonomous Vehicles Volume 2

4.6 Future Trends and Conclusion

Past and recent trends for place recognition in the SLAM context were 
reported here. Such a system is of paramount importance for detecting 
loops in the robot’s traversed path, permitting consistent map genera-
tion. Early solutions were based on range sensors; however, cameras have 
evolved to the primary perception module in recent autonomous plat-
forms owing to the qualitative information provided by vision and their 
low cost. A visual place recognizer consists of three components: image 
processing, map, and belief generator. At last, it could be said that having 
read this chapter, the reader has gained adequate knowledge to construct a 
visual place recognition system, including the parts needed, the compari-
son techniques, and the evaluation metrics which are used.

In conclusion, the reader has been introduced to four systems covering 
all aspects of feature-based visual place recognition systems. At first, by 
presenting two pre-trained visual bag of words methods, the reader walked 
through the global description of an image, which constitutes the most 
frequently used technique when low complexity is required. Moreover, it is 
shown how a sequence of images-based system is constructed, using both 
fixed and dynamic group length, and how its similarity is measured. Then, 
due to the importance of adopting incremental visual vocabularies for 
trajectory mapping, two additional pipelines are presented. Besides, their 
comparison techniques are provided. Finally, it is fair to say that they per-
form satisfactorily in speed and accuracy regarding the methods apposed.

Future works should be based on new ways of representing the incoming 
visual stream aiming for more robust and low complexity representations. 

Table 4.2 Maximum recall at 100% precision (RP100) for the presented 
visual place recognition paradigms.

Approach KITTI (00) KITTI (05) Malaga 2009 6L New College 
City Centre

Sequence of images-based 
visual word histograms [10]

81.5 84.8 81.5 77.6 68.5

Dynamic sequence 
segmentation [12]

96.5 97.3 87.6 92.7 71.1

Hierarchical mapping [89] 93.1 94.2 87.9 88.0 16.3

Bag of tracked words [91] 97.5 92.6 85.0 83.0 20.0
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Additionally, efficient mapping techniques should be investigated as robots’ 
operational conditions are getting longer, i.e., long-term navigation.
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