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Abstract— Unmanned aerial vehicles (UAVs) are at the fore-
front of this century’s technological shift, becoming ubiquitous
in research and market areas. Similarly, nowadays, 3D printing
is a fast-emerging, widely used technology that allows individ-
uals to design prototypes that fulfil their needs. This paper
presents an autonomous UAV designed and implemented to be
fully modular and 3D printable. Furthermore, suitable areas
for landing are recognized using a lightweight deep learning
architecture while a Gazebo model for simulation purposes is
also given to the research community. Finally, its fly and surface
recognition processes are evaluated exhaustively in real-world
and simulation scenarios.

I. INTRODUCTION

Small autonomous unnamed aerial vehicles (UAVs) have
become very popular in the last decade [1]. The ones based
on quadrotors, i.e., small agile UAVs controlled by the
rotational speed of their four rotors, constitute a popular
category. Their vertical take-off and landing ability as well
as their agility and precise movement differentiate them
from other aerial platforms. Their rotors’ arrangement to
the coordinate system of the aircraft’s body discriminates
them into two different types, namely the “x” and the “+”
configurations [2].

UAVs require lightweight materials with great mechan-
ical strength. Unfortunately, polymers such as polylactic
acid (PLA) and glycol-modified version of polyethylene
terephthalate (PETG), which are the primary materials used
in fused deposition modeling (FDM) [3], do not exhibit
such properties [4]. Nevertheless, the FDM manufacturing
processes, such as 3D printing, is a technology that has
made prototyping more accessible [5], [6] and has seen
tremendous growth the previous years [7]. This is because
lightweight structures with complex inner features can be
produced directly without a mould need, giving additive
manufacturing (AM) an advantage over conventional man-
ufacturing [8]. This fact permitted the development of many
quadrotor implementations through open-source designs [9].
For example, a scriptable way of producing small quadrotors
quickly and efficiently using an origami-inspired method was
introduced in [10], where precision cut sheets of plastic film
were folded to achieve desired geometries. At the same time,
the authors in [11] proposed a way to produce a small,
lightweight, and cheap platform on a single printed circuit
board (PCB) aiming for robotic research [11].
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Fig. 1: A view of the quadrotor during the design phase.

Due to the wide use of quadrotors in applications [12],
such as surveillance [13]–[15], search and rescue operations
[16], [17], inspection [18], [19], mapping [20]–[23], and
media production [24], flight safety is of the highest im-
portance in autonomous navigation because of the possible
hazards to people or disasters to their equipment in cases
of malfunction [25]. A crowd detection method based on
light and fast convolutional neural networks (CNNs) [26],
[27] is demonstrated in [28]. Similarly, a novel pipeline
that performs cue extraction with algorithms based on the
structure and functionality of the retina and the visual cortex
of the mammalian visual system is introduced in [29].
A complete UAV flight and landing safety pipeline robot
operating system (ROS)-based implementation is proposed in
[30]. The quadrotor’s mission comprises three phases: take-
off, trajectory tracking, and precise landing, nevertheless, the
latter is among the most challenging tasks when the global
navigation satellite system (GNSS) information is missing
[31].

This paper presents the development of a 3D printed mod-
ular aerial quadrotor platform that can be easily extended and
customized to each application’s needs by choosing different
onboard computers, cameras, sensors, and even different
types of motors’ electronic speed controls (ESCs) and flight
computers. Our system is built from scratch through 3D
printing for quick and easy part creation from the ground
up (see Fig. 1). PETG is used as the construction material
since it combines good mechanical properties, and significant
temperature resistance, while it is recyclable [32]. Further-
more, a surface recognition algorithm for safety landing is
proposed aiming to protect the system from circumstances of
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lost GNSS signal. As a final note, aiming to help the robotics
community, we design and port our aircraft’s model to the
Gazebo simulator for easier integration within ROS.

The main contributions proposed by the paper at hand are
summarized as follows:

• An open-source, fully 3D printable quadrotor construc-
tion.

• A low complexity and lightweight vision-based surface
recognition system, which detects people and avoids
crowded areas.

• A quadrotor integration with ROS by porting the
implemented model to the Gazebo environment. The
simulated aircraft is designed to be as close to the
actual one, including the same set of sensors and flight
characteristics. This way, new applications can easily
be simulated and experimented with before real-world
scenarios.

The structure of this work is as follows. Section II intro-
duces the system’s design and the model’s port to Gazebo
and thus ROS. Section III describes the 3D printed UAV
construction, while Section IV presents the surface recogni-
tion module. Our experimental protocol, both in gazebo and
actual quadrotor, is given in Section V. Lastly, conclusions
and future work come in Section VI.

II. QUADCOPTER FRAMEWORK

The quadcopter layout constitutes the most suitable one
for our approach due to its simple flight properties [33].
The combination of even weight distribution and the possible
slow flight speed facilitate the design process as no substan-
tial computational fluid dynamics (CFD) analysis is required.
A fully 3D printed modular quadcopter airframe presents
many advantages; more specifically, its structure proves to
be very practical in the flowing cases:

• Design revisions do not require the whole airframe to
be re-printed during the UAV development.

• The UAV configuration can be easily modified without
the need for radical changes in its design layout.

• The damage is confined to a minimum when an accident
occurs as only the affected parts call for repair.

Due to the reasons mentioned above, the cost needed for
restoring the UAV and the MTTR (MTTR stands for mean
time to recovery) is the least possible. Therefore the design
can be easily replicated, and the affected-systems can be
easily and quickly replaced.

A. UAV’s design & architecture

Apart from the airframe, the general system architecture
of a quadcopter is standard [34]. The basic building blocks
comprise the flight controller, the onboard computer, the
power distribution module including batteries, the payload
consisting of the sensors needed for the UAV’s mission, and
the thrust system, which consists of the ESCs, the brush-less
electric motors, and their propellers.

A Pixhawk 1.8.2 (fmuv3) is selected as a flight con-
troller for the proposed system due to its low cost and

Fig. 2: A Solidworks view of our fully assembled quadrotor.

variety of features. Concerning its software, it is flashed
with PX4, which is an autopilot running on top of the
real-time operating system (RTOS) NuttX. Furthermore, it
provides access to the aircraft’s parameters, while much
support exists since it is widely adopted from the research
and individual communities [35]. As a final note, MAVLink,
a communication protocol used to monitor and control UAVs
through an onboard computer, constitutes the last component
of our architecture.

Next, an Nvidia Jetson nano equipped with ROS is chosen
as an onboard computer, while the PX4 to ROS com-
munication is achieved via MAVROS, an extendable node
with ROS that converts MAVLink messages to ROS topics
[36]. The rest of the components, such as the thrust and
power distribution systems, are not critical components as
the former should lift the quadcopter and maintain its altitude
at 50% of throttle input, while the latter is responsible for
providing the suitable voltages reliably to each subsystem.
Finally, our platform perceives the environment using a
conventional Raspberry Pi’s IMX219 rolling-shutter camera.

The main guidelines during the design phase of the
quadrotor are the following:

• Even weight distribution of rendering the platform as
passively stable as possible.

• A robust aircraft structure capable of withstanding harsh
landings.

• The flight controller is mounted on vibration isolation
dampeners.

• The enclosed components are protected from dust and
other external factors.

Similarly, we considered the following FDM’s limitations:

• Parts need to be designed in such way that big over-
hangs are avoided.

• The maximum area of printed parts is within our print
volume limits.

The final design of the proposed quadrotor is illustrated in
Fig. 2 while an exploded view, where the majority of the
components are visible, can be found in Fig. 1.

B. Gazebo simulator model

As robot simulators allow to design, simulate, and test
robotic applications in relevant physical environments inde-
pendently of the availability of actual hardware and, at the
same time, permit time-saving during development and cost,
we modeled our quadrotor for integration into the Gazebo

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on July 21,2022 at 08:16:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: The Gazebo model of our 3D printed modular
unmanned aerial vehicle (UAV) quadrotor as illustrated in
the simulated environment.

environment. As a result, a compatible model1 is generated
with the quadrotor’s 3D system and data such as weight,
dimensions, and thrust characteristics. At first, the .dae or .stl
files from the urdf Solidworks plug-in are exported, while
the platform’s characteristics, e.g., collision, visual-inertial
sensors, in the .sdf file are configured subsequently. We are
based on the IRIS, a quadcopter pre-installed in Gazebo,
and aiming to accomplish a simulation as close to the real-
world. Therefore, we calculate the thrust characteristics of
the quadcopter. In particular, libgazebo motor model.so is
the plugin responsible for simulating the motor-propeller
system, while the critical parameters that need adjustment are
the maxRotVelocity¿, motorConstant, and momentConstant.
Our calculations are based on [37] and the PX4’s Gazebo
software in the loop (SITL) source code. As a final note, the
perception sensor, i.e., a camera, is added to the model in the
same position as its real counterpart. This way, the dynamic
environments our platform may encounter are reproduced
in Gazebo, providing us with vital information that would
protect the aircraft from unexpected behavior during real
scenarios. Fig. 3 shows our aircaft as simulated in the Gazebo
environment.

III. UAV CONSTRUCTION

As the most common materials used for 3D printing are
the PLA, PETG, and ABS, our construction is based on
PETG and an FDM 3D printer. Moreover, it is the best
solution since it combines high-temperature resistance, good
mechanical ABS properties, and the ease of printing, i.e.,
no need for high printing surface temperatures and a heated
chamber. The filament manufacturer provides the appropriate
printing settings. Last but not least, Carbon fibre tubes were
used for the motor arms and landing gear since they are
lightweight, robust, and readily available. Our construction
is shown in Fig. 4.

1Our model and the installation instructions can be found on
https://github.com/telemc97/BigBrotherSamp SITL−gazebo.git.

Fig. 4: Our 3D printed modular unmanned aerial vehicle
(UAV). In the left picture, the complete quadrotor without
the batteries is demonstrated, while in the right one, the
Nvidia Jetson nano and the global navigation satellite system
(GNSS) module are shown.

IV. LANDING SURFACE RECOGNITION

In case of a UAV malfunction, a safe landing is of utmost
importance because an impact due to loss of control will
place both people and equipment at high risk. Therefore,
our solution is based on detecting people in the area where
the system tries to land, aiming to avoid them. However,
crowd detection is challenging due to variations in peoples’
pose, appearance, size, scale, and orientation. Nevertheless,
even if several techniques try to solve the problem through
deep learning, they focus on the frontal camera view. Yet,
the detection process should be achieved from the above in
our case.

YOLO [38], an open-source state-of-the-art object detec-
tor performing in real-time, is chosen as the backbone of
our pipeline. It approaches object detection as a regression
problem by applying a single CNN while bounding boxes
are generated to the image for the object’s classification
and position. In our paradigm, YOLO V3 tiny is adopted
[39]. It is a YOLO v3 network with a decreased depth of
the convolutional layer; therefore, it is significantly faster
while its detection accuracy is slightly reduced. However, its
performance gains make it a good fit for our Nvidia Jetson.

The cross-section area of a person from above is tiny as
the person’s appearance from above is very different from the
front. Its accurate detection is difficult in conjunction with
the UAV’s high altitude and abrupt camera movements. Due
to this fact, we opted to use the Okutama-Action dataset
[40], which comprises 75093 images captured by UAVs
flying at different altitudes and different angles. In order to
detect people, each frame taken by the quadrotor’s camera
is divided into an S × S grid with N number of cells. If the
entity’s center is laid within a grid cell, then this specific cell
is “responsible” for the object’s detection. At this point, each
grid cell predicts B bounding boxes and confidence scores
for those boxes. These confidence scores correspond to the
model’s confidence that an object is contained in the box
and the accuracy of the box that it predicts. Confidence is
formally defined as:

Conf(%) = (Pr(object)× IoU truth
pred )× 100% (1)

where Conf is the confidence level expressed in a percentage
score, Pr is the predicted box containing the object, and IoU
is the intersection over union between the predicted box and
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Fig. 5: Left: the learning diagram of YOLO v3 with a
maximum mAP of 94% Right: the learning diagram of
YOLO v3 tiny with a maximum mAP of 86%.

Training Results
model TP FP FN aver. IoU

YOLO v3 70244 5396 4113 74.75%
YOLO v3 tiny 65269 10204 9088 66.41%

YOLO v4 71282 5646 3075 75.94%

TABLE I: Training results. Note that there were 74357 truth
positives while the confidence threshold was 25%.

the ground truth. Ideally if the object is contained in the
predicted box, the Conf = IoU . If no object is present then
ideally Conf = 0.

A. Detection network

We tested YOLO V3 and YOLO V3 tiny. Both models
were not pre-trained. Concerning their training, the dataset
was split 80% for training and the rest for validation. Both
YOLO and YOLO tiny were trained in the same unit. The
latter has an input size of 640× 640 while the former a size
of 416 × 416. YOLO’s achieved mAP was approximately
94%, while YOLO tiny achieved an mAP of 86%. YOLO
was trained for N = 150000 iterations but after N = 100000
iterations the learning process was gradually slowing down
and finally at N = 120000 iterations the accuracy stopped
improving, meaning that our network stopped learning at
this point. Similarly YOLO tiny was trained for 200000
iterations. However, at N = 80000 iterations, the learning
process was slowing down and at N = 165000 the learning
reached its maximum accuracy. The learning diagrams are
shown in Fig. 5, while the training results are given in
Table I. Lastly, both networks were trained using 2 Nvidia
RTX3090 GPUs.

B. Landing

In the event that the quad-rotor is switched into Land mode
and at least one person is detected, it aborts landing and
returns in the last safe position before Land mode initiation
or in a predefined altitude. The described solution is very
simple and lightweight and in essence it adds an additional
safety parameter that needs to be checked for the quad-rotor
to complete the landing procedure.

V. PERFORMANCE EVALUATION AND RESULTS

In this section, we perform a quantitative evaluation of
the performance of both our quadrotor and our surface

Fig. 6: Top left: the pitch angular rate of the quadcopter is
annotated with red and the setpoint (calculated by the flight
controller) is annotated with blue. Top right: Roll angular
rate and roll setpoint rate. Bottom left: Yaw angular rate and
setpoint rate. The four direction changes due to the four way-
points are visible to thus subfigure. Bottom right: The flight
altitude recorded both by the barometer and GPS. The black
line in the first three plots indicates the land status of the
quadrotor.

FPS Evaluation
RTX 2060 YOLO V3 YOLO V4 YOLO V3 tiny

Gazebo 27.3 FPS 26.8 FPS 66.7 FPS
Real-World 30.1 FPS 27.2 FPS 93.3 FPS

Jetson Nano YOLO V3 YOLO V4 YOLO V3 tiny
Real-World 1.1 FPS 1.0 FPS 4.7 FPS

2X RTX 3090 YOLO V3 YOLO V4 YOLO V3 tiny
Real-World 105.3 FPS 93.5 FPS 606.3 FPS
RTX 3080 YOLO V3 YOLO V4 YOLO V3 tiny
Real-World 93.3 FPS 84.4 FPS 514 FPS

TABLE II: Evaluation of network’s performance on Gazebo.
Video is captured in 1280× 720 The network’s input size is
640× 640

recognition paradigm. Firstly we assess the airworthiness
of our platform. Next, the evaluation of the recognition
algorithm follows. Finally, tests are performed in the Gazebo
simulator and in the real-world. However, it is worth noting
that our experimental protocol was performed in a private
area in the latter case.

A. Assessing the platform’s airworthiness

Before the test flight, the PID controller must be tuned to
our specific airframe so that oscillations and non-linearities
are avoided. The procedure is covered thoroughly in PX4’s
documentation, while a simple mission was planned for
the main test comprising four waypoints, which formed a
rectangle. The four changes in the aircraft’s direction are
visible in the yaw chart of Fig. 6.

B. Evaluating the surface recognition pipeline

Two tests were performed; the first was the Gazebo,
and the second was the real-world. The latter followed the
first, and it was dependent on its success. Concerning the
Gazebo, an instance with our model was initiated. We chose
Baylands world for the test as it was very close to a real-
world scenario. Both YOLO V3 and YOLO V3 tiny were
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Fig. 7: Left: our quadrotor model hovering above a person
in Gazebo environment. Right: YOLO v3 output as it recog-
nizes the person underneath it with a confidence of 98%.

Fig. 8: Person detection in real-world scenario.

evaluated using an Nvidia RTX 2060. Our system achieved
to detect people in the flying area quite effectively despite
the non-realistic Gazebo’s graphics. The results are given in
Table II. Regarding the second case, the Jetson Nano lacks
the performance of desktop’s GPU; nevertheless, it achieved
4.7 FPS when using YOLO V3 tiny (see Table II). Safety
landing needs accuracy rather than speed, therefore, the lower
framerate is acceptable. We have to note that performance
can be improved by reducing the network’s input size, but
that would impact the overall system’s accuracy. A snapshot
of the algorithm in action both in Gazebo and in real-world
can be found in Fig. 7 and Fig. 8 respectively.

VI. CONCLUSION AND FUTURE WORK

In concluding this work, a low-cost, easily repairable,
and 3D printable quadrotor capable of carrying an onboard
computer is presented. The factors that led to its design
and the system’s architecture are described in detail. At the
same time, a surface recognition pipeline that permits the
UAV to land when people are not included in the landing
area is also proposed. Using YOLO v3 tiny on an Nvidia
Jetson nano, we achieve real-time performance during the
aircraft’s autonomous navigation. Finally, a Gazebo model
capable of being integrated into ROS is implemented and
given to the research community. A more efficient surface
recognition pipeline for detecting suitable landing areas with
lower computational complexity belongs to our plans, while
regarding the UAV development, carbon fiber sheets in the
aircraft’s body will reduce the use of heavy plastics.

APPENDIX

For calculating the gazebo’s parameter’s we know that:

force = realmotor velocity ∗ realmotor velocity∗
motor constant (2)

Similarly to [41], we include:
• ρ, as the air density.
• T , as the thrust produced by the propeller.
• Q, as the torque produced by the propeller.
• P , as the power needed for the revolution of the

propeller.
• n, as the revolutions per minute.
• υ0, as the vertical speed of the propeller in its centreline.
• D, as the propeller’s diameter.

To simulate the forces and moments on a quad-copter,
we need to predict how T and Q vary with n. This is
accomplished using four dimensionless parameters:

• J = υ0/Dn, the advance ratio.
• CT = T/ρn2D4, the thrust coefficient.
• CQ = Q/ρn2D5, the torque coefficient.
• CP = P/ρn3D5, the power coefficient.

next we calculate the the thrust and torque coefficients:

T = CT (J)ρn
2D4 (3)

Q = CQ(J)ρn
2D5 (4)

The power and torque coefficients for all propellers are
related by the following equation:

CQ = CP /2/pi (5)

Using the above we convert the 2 to:

T = ω2(motor constant ) = (2πn2)(motor constant )

T = CT0ρn
2D4 (6)

Thus,

motor constant =
CT0ρD

4

(2π)2
(7)

where CT0 is the static thrust coefficient at J = 0 Again
from the PX4 Gazebo SITL source code in line 243 we get
that the Gazebo model computes the rotor torque magnitude
as: force ∗moment constant with 3 and 4 we have that:

moment constant =
CQ0ρn

2D5

CT0ρn2D4
=

CQ0

CT0
D (8)

Looking at the UIUC Propeller Database [42], [43] we get
that:

CT0 = 0.098

CP0 = 0.04

in 20◦C the air density is ρ = 1.2041kgm−1.3, the diameter
of the propeller is D = 0.28m from 5 we get that CQ0 =
0.00637 From 7 and 8 we get that:

motor constant = 1.8 ∗ 10−5kgm

moment consant = 0.0182m

By adding the above values to our model’s .sdf file we get
a more unique approach to our Gazebo model.
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