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Abstract— As loop-closure detection plays a fundamental role
in any simultaneous localization and mapping (SLAM) system,
through its ability to recognize previously visited locations, one
of its main objectives is to permit consistent map generation for
an extended period. Within large-scale SLAM autonomy, the
scalability in terms of timing needed for database search and
the storage requirements has to be addressed. In this paper, a
low-storage visual loop-closure detection technique is proposed.
Our system is based on the incremental bag-of-tracked-words
scheme for the trajectory mapping still, the generated visual
representations are reduced to lower dimensions through a
resampling process. This way, we achieve to shorten the overall
database size and searching time, while at the same time
preserving the high performance. The evaluation, which took
place on different well-known datasets, exhibits the system’s
low-storage requirements and high recall scores compared to
the baseline version and other state-of-the-art approaches.

I. INTRODUCTION AND RELATED WORK

As an autonomous robot navigates in an unknown envi-
ronment, it constructs an internal map based on its sensors’
incoming measurements [1]. This process is widely known
as simultaneous localization and mapping (SLAM) and has
evolved as the most precious asset for autonomous navigation
over the last three decades [2]. Nevertheless, the sensors’
measurements that are subject to noise as well as the absence
of global positioning measurements cause an accumulated
drift to the robot’s estimated pose (position and orientation).
Due to this fact, identifying previously visited locations, i.e.,
loop-closures [3], along the robot’s path is necessary as a
rectification on the internal map is performed and a consistent
map is built.

Nowadays, cameras have become the central perception
unit [4]–[7], for modern autonomous systems, compared
to the early years, when range and bearing sensors were
adopted [8], [9]. This shift is owed to the camera’s ability to
provide rich textural information while at the same time is a
cheap sensor that can be adopted by platforms with limited
computational capabilities, such as unmanned aerial vehicles
[10]–[13] and space exploration rovers [14]–[18], with high
efficiency.
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A system’s architecture for recognizing previously seen
areas and performing visual loop-closure detection includes
the feature extraction process, the environment representa-
tion, and the decision-making module [19]. The former two
are related to the image processing needed to represent the
incoming sensory data and formulate the robot’s internal
map, i.e., the database, while the latter measures the system’s
confidence about a loop event.

As one of the main objectives of any loop-closure detec-
tion pipeline is to facilitate robust navigation for an extended
period, scalability in terms of storage requirements and
database search timing are issues that every SLAM system
must address [20]. Both constitute demanding tasks from
the aspect of the system’s computational requirements and
achieved performance because, in dense maps, in which
every incoming image is considered a node in the topo-
logical graph, the generated database increases linearly to
the map’s size [21]. Consequently, there has been much
interest in developing compact appearance representations
or mapping techniques to demonstrate sub-linear scaling in
computational complexity and memory demands [22].

Regarding the former, compact representations and in-
creased computational efficiency during database search are
achieved using global visual features [23], [24], which use
techniques that describe the image’s appearance using a sin-
gle vector [25]–[27]. However, robustness against transfor-
mations like scale and rotation are achieved via local visual
features extracted through salient regions-of-interest [28]–
[34]. Even if higher performance can be reached when local
visual features are adopted [35], increased computational
complexity is observed during the database search [36].
With the aim to exploit the advantages of both schemes,
the robotics scholars borrowed the model of bag-of-words
(BoW) from text retrieval [37], to effectively address the vi-
sual loop-closure detection task. In particular, each extracted
local visual feature is assigned to a visual word belonging to
a previously generated visual vocabulary [38]. This way, the
environment is represented by visual word histograms [39]–
[41]. Nevertheless, these approaches are dependent on the
quality of their vocabulary and, in turn, their training data. As
a result, this yields a trade-off between memory usage with
detection performance and computational efficiency [42]. To
address this drawback, visual words generated incremen-
tally, typically produced by clustering similar description
vectors along the navigation course, are proposed to improve
the system’s accuracy [43]–[48]. It is worth noting, when
global features are used, comparisons are made based on
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their descriptors’ distance [49], e.g., Euclidean or cosine
[50]. However, for methods based on local features, voting
schemes are adopted [51]. As a final note, many pipelines are
based on GPU-enabled techniques to close loops in real-time
[52].

Concerning the mapping techniques, different map man-
agement methods are adopted, including sparse topologi-
cal maps or key-frames [53], hierarchical mapping via the
description of a group-of-sequential-images [54], and the
map’s size reduction through memory scale discretization
[55]. Key-frame selection is performed by utilizing tech-
niques that detect changes in the incoming visual scenes.
Using different decision metrics, such as distance and angle
between observations in space [56], specific time intervals
[57], and a minimum number of tracked landmarks [58], the
system’s complexity is reduced.

As the storage requirements needed to map the whole
environment in long-term applications constitute a crucial
factor, this paper proposes the compact representation of
the incoming image stream for a low-storage loop-closure
detection system. Our method is inspired by the work of Liu
and Zhang, who detected loops using the most discriminant
information extracted through a PCA technique [59]. This
way, the authors achieved to reduce the descriptor space
from 960 dimensions to 60 ones while maintaining high
accuracy. However, in our framework, we rely on a data
resampling process to reduce the descriptors’ dimensions.
Our system is built upon the bag-of-tracked-words scheme,
which incrementally constructs a visual vocabulary and de-
cides about familiar locations based on a probabilistic model.
The main contributions of the proposed work are summarized
as follows:

• A low-storage and low-complexity visual loop-closure
technique based on downsized descriptor vectors, gen-
erated through a data resampling process.

• An extended experimental evaluation upon the
database’s size, the storage requirements, and the query
timings.

The rest of the paper is organized as follows. Section
II describes the proposed system. Section III evaluates its
performance and, finally, Section IV concludes our work.

II. METHODOLOGY

This section starts by briefly describing the bag-of-tracked-
words model. In particular, the two primary operations, viz.,
the database’s build and search, are presented, while the
proposed dimensionality reduction technique follows.

A. Building the database

The incremental visual bag-of-tracked-words model maps
the traversed environment based on three steps. In par-
ticular, the first regards the key-points extraction and
tracking, the second the guided feature selection, and
the last one the visual words’ generation. In particular,
as the extracted speeded-up robust features’ [29] key-
points (Pt−1 = {p1t−1, p2t−1,..., pνt−1}) enter the Kanade-
Lucas-Tomasi tracker [60], their projected location between

the previous image It−1 and the current visual data It is
obtained. This set of points is referred to as tracked points
(TPt = {tp1t , tp2t ,..., tpνt }). Using the nearest neighbor (NN )
scheme among the tracked points’ coordinate space, the
ones (TPt) projected in image It and the ones in Pt are
matched. The nearest point pNNt ∈ Pt, for each tracked point
tpit, is selected as a track-member when their points’ and
descriptors’ distance satisfy a threshold [48]. If one of the
above conditions is not met, the corresponding track point
stops existing and another one is chosen in It takes its place.
Finally, a new tracked word is generated when a specific key-
point’s length τ is reached (τ > ρ). The representative visual
word is the average of tracked descriptors:

TW[i] =
1

τ

τ∑
j=1

dj [i] (1)

where dj [i] denotes the element in the i-th
(SURF: i ∈ [1, 64]) dimension of the j-th (j ∈ [1, τ ])
description vector.

B. Searching the database

A probabilistic voting scheme is used as a decision-making
module. More specifically, during the query time IQ, the
features formulated by guided feature selection are matched
with the generated tracked words in the database through a
k-NN (k=1) technique. Next, votes are distributed into the
traversed map to the corresponding locations and a database
vote counter xl(t) in generated. Using a binomial density
function, a probabilistic score is assigned to every database
location:

Xl(t) ∼ Bin(n, p), n = N(t), p =
λl

Λ(t)
. (2)

Xl(t) corresponds to the random variable concerning each
database location’s l number of aggregated votes at time
t. N is the multitude of query’s tracked words, i.e., TPQ,
λ represents the number of visual elements included in l,
i.e., TWl, and Λ(t) corresponds to the size of the searched
database. If a location’s binomial value satisfies a loop-
closure threshold th, it is accepted:

Pr(Xl(t) = xl(t)) < th < 1, (3)

where xl(t) corresponds to the respective location’s aggre-
gated votes. Still, to avoid cases where unexpectedly few
votes are aggregated by a location, the following condition
should also hold:

xl(t) > E[Xl(t)]. (4)

Finally, the chosen pair of images is verified through a
geometrical check. More specifically, a fundamental matrix
based on RANSAC (RANSAC stands for random sample
consensus [61]) should be estimated.
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Fig. 1: An overview of the dimensionality reduction process.
First, a lowpass filter is applied to the description vector,
aiming to remove high frequency components. Then, samples
are selected from the filtered signal with a constant interval,
in order to form the final descriptor.

C. Dimensional reduction of the visual data

Intending to accelerate the execution time needed for
the proposed pipeline, we reduce the dimensionality of the
descriptors’ space for both query and database observations.
Treating every vector as a one-dimensional signal, we uti-
lize a re-sampling process to modify its length. While a
direct value sampling using a constant interval can reduce
the signal’s length, embedded high-frequency components
can distort the encoded information due to aliasing. Those
frequencies are owed to texture-rich patches around the
detected features and the descriptor method’s layout, causing
rapid changes in the vector’s values. Therefore, we employ
a lowpass filter [62] prior the periodic sampling process,
to discard those frequencies and thus conserve the visual
representation’s integrity [63] (see Fig. 1).

III. EXPERIMENTAL EVALUATION

In this section, the proposed technique is evaluated. At
first, the datasets used for our experiments are described.
Subsequently, the evaluation metrics adopted for assessing
the system’s performance are given, while the system’s com-
plexity and comparative results follow. All experiments were
performed on an Intel i7-6700HQ 2.6 GHz processor with 8
GB RAM, while the bag-of-tracked-words parameterization
is based on the open-source implementation1.

A. Evaluation datasets

Four different publicly-available datasets are selected for
our experiments. Aiming to show our method’s adaptability
over several operational conditions, these are chosen because
they present a variety of conditions, i.e., camera properties,
images per image-sequence, trajectory size, and sensor fre-
quency. An overview of the used datasets is given in Table
I. Using the visual stream recorded through a stereo camera
rig mounted on a forward-moving car, sequences 00 and
05 are selected from the Karlsruhe Institute of Technology

1https://github.com/ktsintotas/Bag-of-Tracked-Words

TABLE I: Evaluation datasets.

Name Camera properties # Images Distance

KITTI 00 [64] 1241 × 376, 10 Hz 4551 12.5 Km

KITTI 05 [64] 1241 × 376, 10 Hz 2761 7.5 Km

Malaga 2009 6L [65] 1024 × 768, 7.5 Hz 3474 1.2 Km

EuRoC MH 05 [67] 752 × 480, 20 Hz 2273 0.1 Km

and Toyota Technological Institute (KITTI) vision suite [64].
They provide substantial loop-closure examples and long-
distance trajectories. Malaga 2009 parking 6L [65], obtained
via the stereo vision system of an electric buggy-typed
vehicle, constitutes the third scenario, while the incoming
image stream in the EuRoC machine hall (EuRoC MH 05)
05 dataset is retrieved by cameras mounted on a hex-rotor
helicopter.

The ground truth information for each dataset is employed
to measure the proposed framework’s performance. It is
a boolean matrix with elements set to 1 when an actual
loop-closure event happens and 0 otherwise. Concerning the
data used for Malaga 2009 parking 6L, the authors in [52]
formulated the ground truth information manually, while for
the KITTI courses and EuRoC MH 05, we were based on
the information employed in [66] and [22].

B. Evaluation metrics

Using the most frequently evaluation metrics, viz. pre-
cision and recall [68], we evaluated our method. More
specifically, precision is the ratio between the correct detec-
tions provided by the proposed system, i.e., true-positives,
over the framework’s total identifications. The recall score
corresponds to the number of true-positives over the total of
actual loop events in the ground truth. As false-negatives are
defined the cases that ought to be detected, but the pipeline
failed to. The recall at 100% precision (RP100) is utilized
as a single evaluation metric for the system’s performance,
which demonstrates the highest achieved recall without false-
positive detections.

C. Performance evaluation

In Fig. 2, the system’s overall performance is provided.
The precision-recall curves are generated by varying the
loop-closure threshold over the binomial probabilistic score.
Adopting the same parameters used in the baseline version
[48], we evaluate the impact of our filtering scheme. Our first
remark is that each resulting curve presents a high recall rate
on each evaluation datasets. As shown, the proposed visual
reduction of the database permits the pipeline to successfully
detect loops through a recall score ranging from 80.1%
(EuRoC MH 05 - 32D) to 93.5% (KITTI 00 - 32D). The
best results at 100% of precision are illustrated by the colored
bars. It is worth noting that high performances are achieved
when 32 dimensions are used; however, the recall drops as
we decrease the size of visual data representations. This is
owed to the fact that the distinctiveness of visual cues is
reduced following the database size.
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Fig. 2: Precision and recall curves as generated by the
proposed pipeline. Colored bars at the bottom of each curve
indicate the recall rates achieved from the system for each
dataset. The 100% precision (RP100) is also presented as an
evaluation metric.

Fig. 3: System’s response over the KITTI 00 dataset [64] for
each of the main processing stages of the proposed algorithm.

D. System’s complexity

The average response timings per image produced by our
system are illustrated in Fig. 3. The proposed technique
is evaluated on the KITTI 00 image-sequence as it is the
longest one while, at the same time, exhibiting a remarkable
amount of loop-closure events. As a result, 4551 images are
processed. An average timing of 124.4 ms per query image is
achieved. Table II provides extensive timing documentation
for each stage. The feature extraction process involves the
computation of SURF key-points detection and description,
while the incremental bag-of-tracked-words-based database
is included in the environment representation. The decision-
making step corresponds to the time needed for the visual
vocabulary search via k-NN, as well as the time required for
the geometrical verification of the candidate pair.

As presented in Table II, the system achieves low computa-
tional complexity. Except for the feature extraction process,
which is high as expected for every approach using local
visual features, the other components need a short time. Fi-
nally, the database search, which the most costly component
in any visual loop-closure detection pipeline, reaches 45.2 ms
on average due to the low dimensional space of the database.

TABLE II: System’s timing (ms/query) for the KITTI 00
dataset [64].

32D 16D 8D

Feature Key-points detection 42.6 42.6 42.6
extraction Key-points description 24.8 24.8 24.8

Environment Kanade-Lucas-Tomasi 7.5 7.5 7.5
representation Guided feature selection 1.8 1.8 1.8

Decision- Database search 45.2 23.1 16.9
making Binomial scoring 0.7 0.7 0.7

Geometrical verification 1.8 1.8 1.8

Total pipeline 124.4 102.3 96.1

TABLE III: In depth comparison with the baseline version
of bag-of-tracked-words [48].

Method Baseline [48] Proposed

SURF Size Time SURF Size Time
Dataset (#) (Mb) (ms) (#) (Mb) (ms)

KITTI 00 [64] 51K 12.4 173.5 51K 6.2 124.4
KITTI 05 [64] 21K 7.0 130.1 21K 3.5 102.1
Malaga 6L [65] 41K 10.0 171.8 41K 5.0 144.3
EuRoC 05 [67] 20K 4.8 90.8 20K 2.4 78.5

TABLE IV: In depth comparison with our previous work
BoTW-LCD [22].

Method BoTW-LCD [22] Proposed

SURF Size Time SURF Size Time
Dataset (#) (Mb) (ms) (#) (Mb) (ms)

KITTI 00 [64] 34K 8.3 126.2 51K 6.2 124.3
KITTI 05 [64] 20K 4.8 105.3 21K 3.5 102.1
Malaga 6L [65] 28K 6.8 146.7 41K 5.0 144.3
EuRoC 05 [67] 13K 3.1 82.6 20K 2.4 78.5

TABLE V: In depth comparison with the state-of-the-art
iBoW-LCD [47].

Method iBoW-LCD [47] Proposed

ORB Size Time SURF Size Time
Dataset (#) (Mb) (ms) (#) (Mb) (ms)

KITTI 00 [64] 958K 29.2 400.2 51K 6.2 124.3
KITTI 05 [64] 556K 16.9 366.5 21K 3.5 102.1
Malaga 6L [65] 806K 24.5 440.8 41K 5.0 144.3
EuRoC 05 [67] 443K 13.5 383.7 20K 2.4 78.5

E. Comparative results

This section compares the proposed method against other
state-of-the-art frameworks in incremental visual vocabulary
building, namely BoTW-LCD2, iBoW-LCD3, as well as
the baseline version of bag-of-tracked-words. Note that a
comparison with off-line BoW schemes regarding their re-
spective complexities is not presented since a direct analogy
with methods based on a pre-trained vocabulary would not
be meaningful. In Tables III, IV, and V, we exhaustively
compare the memory requirements (Size) needed for each
visual vocabulary and the corresponding time (Time) for

2The BoTW-LCD [22] open-source implementation can be found at
https://https://github.com/ktsintotas/BoTW-LCD.

3The iBoW-LCD [47] open-source implementation can be found at
https://github.com/emiliofidalgo/ibow-lcd.
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TABLE VI: Comparisons against other state-of-the-art meth-
ods using the recall scores for 100% precision (RP100).

Dataset Baseline BoTW-LCD iBoW-LCD Ours
[48] [22] [47]

KITTI 00 [64] 97.5% 97.7% 76.5% 93.5%
KITTI 05 [64] 92.6% 94.0% 53.0% 90.0%
Malaga 6L [65] 85.0% 85.2% 57.4% 80.1%
EuRoC 05 [67] 83.7% 85.0% 25.6% 80.1%

each method to detect loop-closures. Note that in most cases,
the proposed technique maps the robot’s traversed path with
a noticeably lower amount of memory consumption, which
also permits lessened timings during database search.

In addition, in Table VI, we compare the proposed tech-
nique with the pipelines mentioned above regarding their
achieved performance. The recall score for flawless preci-
sion (RP100) is provided. The cited methods’ performance
is acquired from our previous work [22], wherein each
method was evaluated based on the same ground truth. As
can be observed, the proposed system can achieve high
recall rates in most environments compared to the state-
of-the-art. Notably, in terms of recall, it is quite similar
to the baseline while outperforming iBoW-LCD. However,
it performs unfavorably compared to BoTW-LCD, which
constitutes a method that evolves the original concept of the
bag-of-tracked-words using visual vocabulary management
techniques and more sophisticated decision methods. As a
final note, using data resampling as a means of lowering
the descriptors’ dimensionality, can consistently reduce the
computational times and the size of the storage requirements,
yet does not always imply higher recall values.

IV. CONCLUSIONS

In this work, a low-storage visual loop-closure detection
framework is proposed. Based on the bag-of-tracked-words
model, a resampling technique comprised of an anti-aliasing
lowpass filter and a data selection mechanism is applied over
the extracted visual local features to reduce the memory
footprint. This way, an incremental visual vocabulary is con-
structed, offering low complexity and competitive accuracy
as evidenced by its extensive evaluation on four different
datasets. Finally, our future plans include the study of
different indexing techniques to further reduce the system’s
timings.
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