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Abstract— Hand pose estimation constitutes prime attain-
ment for human-machine interaction-based applications. Real-
time operation is vital in such tasks. Thus, a reliable estimator
should exhibit low computational complexity and high precision
at the same time. Previous works have explored the regression
techniques, including the coordinate regression and heatmap
regression methods. Primarily incorporating ideas from them,
in this paper, we propose a novel, fast and accurate method
for hand pose estimation, which adopts a lightweight net-
work architecture and a post-processing scheme. Hence, our
architecture uses a Dual Regression strategy, consisting of two
regression branches, namely the coordinate and the heatmap
ones, and we refer to the proposed method as DRHand. By
carefully selecting the branches’ characteristics, the proposed
structure has been designed to exploit the benefits of the two
methods mentioned above while impoverishing their weaknesses
to some extent. The two branches are supervised separately
during training, and a post-processing module estimates their
outputs to boost reliability. This way, our novel pipeline
is considerably faster, reaching 44.39 frames-per-second on
an NVIDIA Jetson TX2 graphics processing unit, offering a
beyond real-time performance for any custom robotics applica-
tion. Lastly, extensive experiments conducted on two publicly-
available datasets demonstrate that the proposed framework
outperforms previous state-of-the-art techniques and can gen-
eralize on various hand pose scenarios.

I. INTRODUCTION

Hand pose estimation is crucial for hand gesture recogni-
tion as well as for various practical applications, including
human-machine interaction [5]–[9], virtual reality [10]–[13]
and augmented reality [14]–[16]. In particular, a hand pose
estimator aims to detect the 21 or more hand-landmarks (i.e.,
the fingertips and the joints of each finger), and subsequently
return the respective coordinates. In the literature, hand
pose estimation mostly leans on 3D landmarks extracted
through the depth sensors [17]–[22]. Nevertheless, due to the
sensing distance restrictions and the low resolution of typical
depth maps, such approaches do not allow satisfactory gen-
eralization, while showing great computational complexity.
Recently, by leveraging deep convolutional neural networks
(CNNs) trained on labeled data, there has been significant
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Fig. 1: Comparison between the proposed framework DR-
Hand and other state-of-the-art methods, namely SRHand-
Net [1], NSRM Hand [2], InterHand [3] and FastHand [4].
The frames-per-second(FPS) are calculated on an NVIDIA
GeForce 940MX, while the results of correct keypoint (PCK)
are evaluated on the RHD dataset. The size of each circle
indicates the respective model size. It is notably that amongst
all, the proposed system achieves the highest performance,
while requiring the least amount of learnable parameters.

progress in restraining this problem. Deep learning archi-
tectures have been proved remarkably efficient in capturing
descriptive features from high dimensional sensory inputs
in a wide variety of computer vision challenges [23], [24].
However, hand pose estimation remains challenging due to
the high similarity existing among fingers and the nuisance
of self-occlusion. In this work, we focus on 2D hand
pose estimation from monocular color images in real-time
applications.

Current state-of-the-art works can be categorized into
coordinate-based [2], [9], [25]–[27] and heatmap-based [1],
[28]–[31] regression methods. The former directly regress
the locations of each hand landmark with clear structural
information (i.e., geometric relationship) among the hand
joints. The latter generates an H × W × C confidence or
score map, where C is the number of hand landmarks and
H ×W is the size of each landmark’s confidence map. The
points’ value in the confidence map indicates the probability
of the respective hand landmark with respect to its current
position. The most likely location of one specific landmark
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Fig. 2: Illustration of the proposed hand pose estimation network architecture. Given an input image, feature maps containing
rich hand information are firstly obtained via the backbone network. Then through the heatmap regression branch the hand
joints are predicted; the output of the last deconvolution layer is fed into the coordinate regression branch for predicting the
coordinates of the hand-joints. The final results are obtained via a post-processing technique.

is selected as the position of the maximum value in the
confidence map. Nevertheless, these two regression methods
are both limited for applications and we describe the reasons
below. The coordinate-based regression approaches should
essentially regress the offset of each landmark relatively to
the input image; however, the prediction of a long-distance
offset is difficult and thus the network strains to converge.
On the contrary, the output of the heatmap-based methods
converges easier because the network only needs to generate
the probability at each point to the different confidence maps.
Yet, they may present a performance reduction due to their
lack to memory the hand structure during training.

Nowadays, computational complexity is the primary con-
cern for hand-pose estimation applications. The reason is
that these systems are expected to perform in real-time.
Unfortunately, previous hand pose estimation and gesture
recognition solutions fail to achieve this goal when applied to
mobile robots [29], [30], [32]–[35] as they are not designed
for embedded devices; hence, they are not light enough to
be employed in resource-constrained platforms.

In this paper, we propose a novel network architecture for
hand pose estimation based on a dual regression strategy that
integrates the coordinate-based and heatmap-based methods.
Considering their advantages and disadvantages, we aim to
suppress the weaknesses of high complexity and limited
interconnection information presented in the heatmap-based
solutions, while we try to overcome the low accuracy of the
coordinate-based methods. The proposed pipeline comprises
the backbone network with the two regression branches,
namely the coordinate and the heatmap, as well as a post-

processing module. Our extensive experiments on two public
benchmark datasets demonstrate the system’s real-time infer-
ence and high prediction accuracy. As shown in Fig. 1, our
proposed method has successfully managed to achieve state-
of-the-art performance while giving consideration to memory
cost and inference speed. The main contributions of this work
are summarized as follows:

• A novel dual regression method for hand pose es-
timation (DRHand) combining coordinate-based and
heatmap-based regression techniques for fast and ac-
curate hand pose estimation.

• A lightweight framework capable of real-time execution
on mobile robots with limited computing resources.

• An exhaustive experimental evaluation protocol on the
NVIDIA Jetson TX2 graphics processing unit (GPU),
demonstrating our framework’s effectiveness compared
with state-of-the-art methods.

The rest of the paper is organized as follows: at first,
in Section II, we review the related literature. Then, in
Section III, the proposed DRHand is described in detail,
while in Section IV we present the evaluation process and
the experimental results. Finally, in Section V, we summarize
the conclusions and discuss our research plans.

II. RELATED WORK

In this section, a focused discussion on the most repre-
sentative approaches for hand pose estimation is presented.
We firstly provide a brief review of the coordinate-based
regression methods, whereas the heatmap-based ones follow.
MediaPipe Hands [27] uses a single shot multi-box detector
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(SSD) [25], palm detector and a hand-landmark model to
predict high-fidelity 2.5D landmarks. A large-scale, multi-
view dataset recorded using a green screen and augmented
with a complex artificial background is provided by Frei-
HAND [26]. In addition, a CNN is trained to predict hand
poses with a particular generalization ability. Nonparametric
structure regularization machine (NSRM) [2] proposes a
cascade multi-task architecture, which can jointly learn hand
structure and key-point representations. In [9], a single-stage
CNN with a “self-attention" module is presented to regress
the landmarks’ coordinates directly. The utilized attention
augmented inverted bottleneck block is used to represent
global constraints and correlations between hand-landmarks.

Heatmap-based regression approaches show an improved
accuracy compared with the coordinate ones. Multiview
bootstrapping [29] follows the structure of convolutional
pose machines (CPMs) [28] to predict hand-landmarks. Its
performance is improved via 3D triangulation obtained by
a multi-camera setup. The authors in [30] propose synthetic
data generation for monocular 3D hand-tracking and deal
with challenging occlusions. A network consisting of a hand
mask stage followed by a pose prediction one, improves the
hand pose estimation accuracy [31], whereas an encoder-
decoder network allows for the prediction of hand-bounding
box and hand-landmarks simultaneously [1]. InterHand2.6M,
a large-scale dataset for hand pose estimation consisting of
2.6M single and interacting hand frames with annotations,
and InterNet, a 3D interacting hand pose estimation network,
are provided in [3].

III. METHOD

A. Network structure

The proposed network architecture is illustrated in Fig. 2
and its implementation details are demonstrated in Fig. 3.
Aiming to provide an efficient and low-complexity model
with robust feature representation, we have made two notable
improvements in our proposed network architecture.

The first one is the usage of the depthwise separable
convolution [36] and the corresponding additional operation.
Compared with the vanilla convolution [36], depthwise sep-
arable convolution can process the same calculation on high-
dimensional input data with lower computation cost. Thus,
in our proposed DRHand, we adopt the standard residual
block [37] with depthwise separable convolution for the
primary unit of our backbone network. At the same time,
to overcome the possible degradation problem presented in
the deep networks, we also add a max-pooling layer, which
shares the same input of the current depthwise separable
convolution. Then the output of the max-pooling layer and
depthwise separable convolution are summed together to feed
into next layer as shown in Fig. 3(a). This process acts as a
residual block to avoid the degradation problem.

The second one is the concatenation operation between
the high-level and low-level features, which share the same
resolution. Concatenation operation is widely used in com-
puter vision tasks, such as semantic segmentation [38], [39],
to combine the texture information in the lower layers and

semantic information in the high layers, and thus can help
to obtain a more robust feature representation. We apply this
concatenation operation three times in our backbone network
as shown in Fig. 2 and Fig. 3(a).

The detailed design for each module in our proposed
DRHand is shown in Fig. 3, and the simplified version is
demonstrated in Fig. 2. There are total four different types
of block or layer in our proposed framework as can be seen
from Fig. 3, including “Conv2D", “DSConv2D", “MaxPool"
and “DeConv2D". The numbers after each block name in
the block, namely “(k, k), D", are the detailed parameters
of each block, in which (k, k) is the filter size, and D is
the output dimension for the current block. In particular,
“Conv2D" is a 2-dimensional vanilla convolution block.
“DSConv2D" is a depthwise separable convolutional residual
block. The output and the input of the depthwise separable
convolution are added together and then fed into the next lay-
ers. “MaxPool" is a max-pooling layer, and “DeConv2D" is
a deconvolutional block. Except for the last “Conv2D" in the
heatmap regression branch and the last “DSConv2D" in the
coordinate regression branch as illustrated in Fig. 3, all other
convolutions in “Conv2D", “DSConv2D" and “DeConv2D"
are followed by a BatchNorm layer and a ReLU activation
layer.

1) The backbone network: The primary demand for an
efficient method is a backbone network with the ability to
extract robust features. As described before, we utilize the
standard residual block as the basic unit. The residual block
contains a convolutional layer, As shown in Fig. 3, except
for the first “Conv2D" block, every other convolutional
layer adopts the depthwise separable convolusion. The input
data are firstly down-sampled using depthwise separable
convolution and then are up-sampled with deconvolution.
Moreover, feature maps, between the scales of [32, 16, 8], are
connected across layers as illustrated in Fig. 2 and Fig. 3.
In this way, the low-level texture features and high-level
semantic features are merged in a more reliable fashion,
yielding to robust feature extraction. As input, the backbone
network accepts a 256 × 256 image. Furthermore, the first
convolutional kernel size is 3 × 3 while the size of the rest
kernels is 5×5. Thus, a feature map of 8×8×288 is generated
for each incoming image after passing through the backbone
network.

2) The heatmap regression branch: The input of this
branch consists of the generated feature maps from the back-
bone network. Next, three successive deconvolution layers
are adopted to make our model’s forward speed as fast
as possible as shown in Fig. 3(b). Subsequently, the final
heatmap, which is the size of 64 × 64 × 21, is acquired
with the most minor calculations and number of parameters.
Finally, an L2 loss is added at the end of this branch, which
is defined as:

Lheatmap =
1

2
(W1(H(B(x)))− y)2, (1)

where x and y denote the incoming image data and its
corresponding ground truth label, respectively. B(∗) stands
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Fig. 3: Implementation details of our proposed back-
bone network. “Conv2D" indicates the vanilla convolution,
“DSConv2D" indicates the depth-wise separable convolution,
and “DeConv2D" indicates the deconvolution.

for the backbone network, H(∗) and W1(∗) are the three
deconvolution layers and the last convolution layer in the
heatmap regression branch. Given the input image x, the
final output from the heatmap regression branch is denoted
as W1(H(B(x)).

3) The coordinate regression branch: This branch re-
ceives the intermediate product from the heatmap regression
branch before the last convolution layer. Since we aim to
construct a pipeline with low computational complexity, we
utilize only five consecutive deeply separable convolutional
layers and one convolution with pooling layers. Thus, the
coordinates of the 21 hand-landmarks are received with the
minimum complexity. Wing loss [40] is also adopted, which
is defined as:

Lcoord =
{
w ln (1 + |z|/ε) if |z| < w
|z| − C otherwise . (2)

Given the input image x, the L1 distance between the
output from coordinate regression branch and the cor-
responding ground truth label is denoted as z, where
z = |W2(R(H(B(x))))− y|. R indicates the five convolu-
tion and pooling layers in the coordinate regression branch,
and W2 is the last convolution and reshape layer in the
coordinate regression branch. w is a non-negative parameter
limiting the range in (−w,w), ε sets the curvature of the
nonlinear region and C = w−w ln(1+w/ε) is a constant that
smoothly links the piecewise-defined linear and nonlinear
parts.

B. Post processing

Owing to the proposed dual regression strategy, the system
delivers two landmark results from the respective regression
branches. In the post-processing module, both outcomes are
estimated to determine the final output. As mentioned in
Section I, the results from the coordinate regression tech-
nique show a straightforward geometric relationship among
the joints; yet, their localization accuracy is poor. On the
contrary, heatmap-based models present higher precision but
lack of geometric interconnection information. To combine
their advantages and provide better results based on the
reliability of both branches’ output, we propose the following
scheme to determine the final outcome:

• Given an input image, each branch generates its land-
mark coordinates.

• The Euclidean distance between the two branches’ pre-
dictions is calculated and referred to as [d1, d2, ..., d21].

• The distances are compared with a predefined threshold
α, which is the length of a hand knuckle, i.e., the median
of the predicted length of all hand knuckles. Then for
each hand-image, we choose the i-th output coordinate
from the heatmap regression branch as our final i-th
landmark prediction result only if di < α. Otherwise,
the i-th output of the coordinate regression branch is
used as the final landmark prediction coordinate.

The reason behind the proposed post-processing scheme is
that in most cases, the results of the heatmap regression are
more accurate than the coordinate regression’s results. There-
fore, when the distance of a single hand landmark coordinate
output from the two branches is relatively small, the result
of the heatmap regression branch is closer to the ground
truth label. However, the lack of structural information in
the heatmap regression branch may prevent the system from
accurately predicting every single landmark coordinate. As a
consequence of this phenomenon, the Euclidean distance di
between the two outputs can be considerable. Then, at this
time, we choose the outcome from the coordinate regression
branch as presumably being a more reliable one.

IV. EXPERIMENTS

In this section, extensive experiments on two public
datasets are conducted to evaluate and demonstrate the
effectiveness of the proposed DRHand.
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A. Experimental setup

1) Datasets: The YouTube3D Hands [41] and GANerated
Hands [30] image-sequences have been utilized as training
data. The former is a 3D hand pose estimation benchmark,
containing 102 videos for training and 7 videos for testing.
Since we aim for a 2D hand pose estimation, the 3D coor-
dinate labels are projected onto the 2D space. This way, a
novel dataset involving original images with their respective
2D labels is formed, ready for use in any 2D hand pose
estimation scenario. We denote this new image sequence,
containing 47,125 images, as YouTube2D Hands. The second
dataset, GANerated Hands [30], is a benchmark composed
of synthetic images with various gesture types and more
accurate annotations when compared with other real-world
datasets. This image sequence consists of 141,449 elements.
We use STB [42] and RHD [32] benchmark datasets as our
evaluation datasets; the images included in these two datasets
are 6,000 and 2,727, respectively.

2) Implementation details: The proposed network was
implemented using TensorFlow [43], and trained on four
NVIDIA Tesla P40 GPUs. The whole network parameters
were optimized through Adam optimizer [44]. The training
process followed a two-stage procedure. At first, only the
heatmap regression and the backbone network were opti-
mized with an initial learning rate of 1e−3 and a batch size of
64. This training process lasts for 11 epochs till the heatmap
regression branch converges. Subsequently, the coordinate
regression branch was combined with the previously trained
system for further optimization. Finally, the whole network
was optimized with a lower learning rate of 1e−4 and a larger
batch size of 256.

3) Evaluation metrics: Three different metrics are used to
evaluate the proposed method comprehensively. In particular,
the sum of squares error (SSE), the end-point error (EPE),
and the probability of correct keypoint (PCK) within a
normalized distance threshold are selected and defined as:

SSE =

∑N
s=1(

∑21
i=1((

ysi−ŷsi
max(w,h) )

2))

N
, (3)

EPE =

∑N
s=1(

∑21
i=1

∥∥∥ (ysi−ys0)−(ŷsi−ŷs0)
max(w,h)

∥∥∥)
21×N

, (4)

PCKi
σ =

1

N

N∑
s=1

1(
‖ysi − ŷsi‖
max(w, h)

≤ σ), (5)

PCKσ =

∑21
i=1 PCK

i
σ

21
, (6)

The term ysi is the ground truth of landmark i and ŷsi is the
predicted coordinate, while i represents the landmark index,
i.e., i ∈ [1..., 21], and s is the input hand image index. N
denotes the number of samples in the dataset and w and h
are the width and height of the original images, respectively.
In Eq. 5, 1(·) denotes the indicator function and σ is a pre-
defined threshold. The indicator function equals to 1 only

when L2 distance between the predicted landmark and the
ground truth is less than σ, otherwise it equals to 0. In Eq. 6,
PCKi

σ represents the PCKσ metric of landmark i with
threshold σ. In our experiments, σ is set to 0.2.

B. Experimental results

Aiming to further elaborate the efficiency of the proposed
framework, we attempt a comparison with other state-of-
the-art pipelines, namely SRHandNet [1], NSRM Hand [2],
InterHand [3], MediaPipe Hands [27] and FastHand [4].

1) System complexity evaluation: Table I presents the
speed, in terms of frames-per-second (FPS), for the afore-
mentioned methods. Note that MediaPipe Hands is not
involved in this comparison since no open-source code for
evaluation is provided. Nevertheless, for the performance
comparison presented in Table III, we have reimplemented
a demo version of this framework without the accelera-
tion operations customized by the authors. Experiments are
run on two devices, an NVIDIA GeForce 940MX GPU
of a laptop and an NVIDIA Jetson TX2 GPU. Notably,
our method outperforms other methods in inference time,
exhibiting twice as high execution times as SRHandNet and
NSRMHand. Furthermore, a model of 7.5MB is generated,
which is 10.43% of the size for SRHandNet and 1.38% of
InterHand. Though the proposed system is not comparable
with MediaPipe Hands in terms of model size, we achieve
better results on STB and RHD datasets (see Table III).
Besides that, the proposed method still uses the lowest cal-
culations of 0.95 GFlops. Yet, these metrics for SRHandNet
and InterHand are hard to be obtained because details are not
provided by the authors. The improvements of the inference
time and space usage are attributed to the utilization of the
depthwise separable convolution and the delicate design of
our DRHand as discussed in Section III-A.

2) Comparison on benchmark datasets: As presented in
Table III, the proposed DRHand and FastHand reach state-
of-the-art performances. In particular, the former outperforms
other techniques on the RHD dataset, where the SSE error
is only 1/3 of those in InterHand. A marginal improvement
is achieved on the STB dataset, mainly because since most
images in this dataset only contain one hand with fixed
background and fixed camera angle. Thus, the STB dataset
is well segmented, relatively simpler, and so its results are
almost saturated. On the other hand, the RHD dataset is
more challenging. Its synthetic images are widely different
in background and camera angle, while two hands appear in
the same image concurrently. Yet, our pipeline outperforms
the other pipelines.

3) Qualitative results: A qualitative comparison is also
provided in Fig. 4, wherein the last row provides the
ground truth annotations. It is worth noting that our DRHand
presents the closest outcomes to the ground truth. In particu-
lar, the prediction results of SRHandNet fail to detect all 21
joints of the second and third samples, while NSRM Hand
and InterHand give some joint coordinates incorrectly, as
can be seen from some predicted joints’ locations. Compared
with our previous work FastHand, we managed to improve
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TABLE I: Comparison in inference runtime (frames-per-second - FPS) of different hand pose estimation methods.

Model SRHandNet
[1]

NSRM Hand
[2]

InterHand [3] FastHand [4] Proposed

NVIDIA GeForce 940MX GPU 21.06 FPS 2.42 FPS 14.24 FPS 31.33 FPS 48.08 FPS
NVIDIA Jetson TX2 GPU 19.16 FPS 3.65 FPS 7.77 FPS 25.05 FPS 44.39 FPS

TABLE II: Comparison in terms of model size and calculations of different hand pose estimation methods.

Model SRHandNet
[1]

NSRM Hand
[2]

MediaPipe
Hands [27]

InterHand [3] FastHand [4] Proposed

Size (MB) 71.90 139.7 3.9 541.7 13.0 7.5
Calculations (GFlops) – 102.76 – – 2.89 0.95

TABLE III: Comparative results of the baseline methods against the proposed method. The green values denote the best
result and the blue ones the second best. ↑ signifies the higher the better, whereas ↓ marks the lower the better.

Dataset Metric SRHandNet [1] NSRM Hand [2] MediaPipe Hands [27] InterHand [3] FastHand [4] Proposed

STB [42] SSE ↓ – 0.7078 0.9435 0.4853 0.3490 0.3494
EPE ↓ – 0.1326 0.1522 0.1302 0.1317 0.1300

PCK@0.2 ↑ 0.8526 0.7246 0.7032 0.8245 0.8948 0.8910

RHD [32] SSE ↓ – 2.5613 1.6343 1.9929 0.6368 0.6247
EPE ↓ – 0.1953 0.2133 0.2630 0.0968 0.0940

PCK@0.2 ↑ 0.5317 0.7177 0.6927 0.3910 0.8661 0.8677

FastHand

SRHandNet

NSRM Hand

InterHand

Ours

GT

Fig. 4: Qualitative results of the proposed method compared
with other approaches on the RHD dataset [32].

our previous achievement by providing more accurate results,
according to the comparison of the second sample.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel and lightweight network
architecture for hand pose estimation, which is able to be
employed on embedded platforms. Our method DRHand has
been carefuly designed for efficient inference. As we com-
bine heatmap-based and coordinate-based regression meth-
ods, we build a dual regression structure that exploits each
technique’s advantage and overcome their disadvantages at
the same time. The branches’ outputs are carefully selected
through a post-processing technique, achieving this way to
predict quickly and accurately the hand-landmarks.

In our future work, we intend to implement a more
promising framework that would combine the coordinate and
heatmap regression techniques more effectively, as well as to
incorporate a new post-processing strategy to deal with the
output of these two methods. Additionally, we aim to collect
a novel dataset that will help the research community.
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