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Abstract— As we move forward to the fourth industrial
revolution, findings in the state-of-the-art enhance the techno-
logical advancements in the research community as well as the
business one, in particular the textile manufacturing, being here
reviewed. In industry 4.0, the silos-free integrated systems sense
the entire manufacturing environment by using sensor- and
vision-based systems while enable multicorrelation zero-faults
results with the minimum required data. Furthermore, the role
of computer vision is vital in the deployment of cyber-physical
systems, as the rich textural information provided by images
through the scene’s appearance, can be translated into various
findings. The paper at hand examines the existing appearance-
based techniques in textile manufacturing over the previous
five years. Moreover, open challenges and research gaps are
highlighted. Through our analysis, we show that high perfor-
mances are achieved mainly when vision-based systems are
employed. Opportunities regarding one-batch fabric production
without the need to promote multi-level integration are also
proposed. Lastly, our findings exhibit that the self-adaptable
visual features in textile manufacturing can be integrated with
existing systems, e.g., cyber-physical ones, to observe the fabric
factory in real-time while defects are corrected without scraps
creation.

I. INTRODUCTION

Textile manufacturing, also known as “the cottage in-
dustry”, historically was the first one created. During the
first industrial revolution, water and steam-powered loom
mechanical machines permitted mass production. Through
the years, textile manufacturing underpinned regional eco-
nomic growths and country relationships across suppliers,
producers, and consumers [1]. Nowadays, consumers give
more attention to the quality and the unique characteristics
of the products while their daily habits are continuously
changing due to the technological advancements. At the same
time, the worldwide manufacturing model moves forward
to customized production, overcoming the traditional mass
production process. To this end, textile producers should
adapt their mindset and modernize their industry by trans-
forming their methods and equipment, aiming to follow the
rapid changes. A challenging factory is characterized by self-
capable network infrastructures, autonomous systems, and
integrated management techniques with advanced processing
methodologies that enable zero-defect manufacturing [2].
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Autonomous systems with self-adaptable capabilities are
enabled by the well-known industry 4.0 concept. The Ger-
man initiative regarding industry 4.0 has firstly introduced at
the Hanover Fair, wherein the government tried to strengthen
the native industrialists among the worldwide market lead-
ers. Similarly, various initiatives followed this direction by
digitizing their factories as well as the overall supply chain
leading manufacturing into the fourth industrial revolution
era [3]. Besides, this revolution has also affected other
disciplines, such as civil infrastructure, shipyards, and agri-
culture [4], [5].

Considering that businesses hesitate to adjust their mindset
and welcome the new technologies, the academic infras-
tructure under the title “textile learning factory 4.0” is also
established to provide real-time demonstration between lean
production and industry 4.0 operations [6]. More specifically,
the latter is based on the future factory, wherein cyber-
physical production systems (CPPSs) are employed to in-
teract via the cloud- and edge-based infrastructures, collect
real-time information from visual and/or sensor assets, and
analyze the information using advanced techniques that
strengthen human-machine collaboration [7]. Furthermore,
the advancements of artificial intelligence (AI) combined
with the available processing power capabilities enhance
the autonomous decision-making of the system in quality-
related operations, production optimization, and failure assets
predictions [8]. In general, the customized production of
textile manufacturing requires technologies which massively
gather data and provide crucial decisions, such as the ones
machine learning techniques can offer [9], [10].

Machine vision consists of non-destructive techniques
(NDTs) used in various industries to collect the character-
istics and the morphology of an object without physical
interventions. Its most common usage concerns quality-
based applications, wherein the extracted visual features are
highlighted and presented to the corresponding operators
responsible for the final decision. Following the continuous
progress in the AI techniques, the machine vision’s function-
alities are also improved via enabling self-adaptable decision
features. Moreover, during the industry 4.0 era, machine
vision systems are adopted in non-quality applications, viz.
autonomous transportation systems, health and safety inspec-
tion systems, collaborative robots, and ecosystems. Never-
theless, in textile manufacturing, machine vision replaces
human interventions throughout the production processes and
enables fully customized fabrics based on the customer’s
needs.
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As the fabric manufacturers need to facilitate the person-
alized manufacturing without defect challenges, computer
vision techniques will be continuously integrated into the
textile infrastructures strengthening the adoption of industry
4.0. Having that in mind, in this paper, we examine the
machine vision applications that have been applied or tested
in textile industries. Our main contributions are:

• A review analysis of vision-based systems used in
textile manufacturing.

• A representative presentation of the existing contribu-
tions in textile-related machine vision applications.

• An informative conclusion regarding the maturity level
of industry 4.0 systems based on machine vision, the
open-challenges in the field, and the future opportuni-
ties.

This paper is structured as follows. In Section II, we
present the methodology protocol followed for our review.
Next, the analysis of the fabric production process and the
computer vision techniques are discussed in Section III,
while Section IV provides the results. Lastly, in Section V,
we give our conclusions and the proposed future work.

II. METHODOLOGY

Accounting that the machine vision is considered a
technology that can provide self-adaptable features in the
cyber-physical systems’ architecture and the competitive
textile manufacturing environment, this manuscript aims to
simplify the relations between fabric manufacturing and
machine vision under the auspices of industry 4.0. Therefore,
this review analysis is based on the answer of the following
question: “How does the textile production process benefit
from machine vision technology in the context of industry
4.0? The role of machine vision in the fourth industrial
revolution and especially in textile manufacturing is achieved
by creating a search query to collect the corresponding papers
from academic libraries, viz. ACM Library, IEEE Explore,
and Science Direct, from January 2016 to January 2021.
The exploited search query was: (‘‘computer vision"

OR ‘‘machine vision" OR ‘‘robotic vision" OR

‘‘vision-based" OR ‘‘appearance-based") AND

(‘‘cyber-physical" OR ‘‘embedded system") AND

(‘‘industry" OR ‘‘manufacturing" OR ‘‘shop

floor" OR ‘‘production").
A multitude of 2825 manuscripts was indicated. Next, a

duplication check was performed and then the abstract and
title of each paper were examined to select the ones that
recount “machine vision.” Almost half of the manuscripts
were filtered out, while the chosen papers were clustered
in industry-specific categories. Throughout the final stage
of this survey, we examine 15 that were refereed in textile
manufacturing. The other papers report systems and meth-
ods from clothing manufacture, such as contour, shaping,
footwear industry, rug producers, recycling centers, or the
textile or clothes industry.

III. TEXTILE INDUSTRY

Textile manufacturing constitutes one of the most popular
and oldest industries, which have been transformed through
the revolution. Its production steps include the yarn tubes
creation, the coloring procedures, the sewing and knitting
processes, and the final quality control operations, which are
executed before the distribution to the factories for further
shaping. The following section describes the machine vision
systems used for each production stage while their impact
on textile manufacturing is highlighted.

A. Fabric factory

During the yarn production, a sequence of drawn and
twisted actions that spin the fibers together to transform
them into yarn is performed. The next stage is the weaving,
where two sets of yarns stretched out in straight lines are
intertwined to form fabrics. Subsequently, dyeing or additive
processes occur. In particular, the fabric is given the dedi-
cated color (adsorption and diffusion actions), or the second
layer of sewing stamps is applied. Finally, unique technical
characteristics such as flame retardance, water resistance,
smoothing are given to the fabric using various chemicals.
The phases mentioned above include quality control, posi-
tioning, and other functionalities based on machine vision
systems that improve the textile factory’s overall efficiency
and upgrade the delivered products.

1) Yarn production: A series of processes convert the raw
fibers into yarns that are further used to produce textiles at
the yarn production. The bobbing process constitutes a vital
step in the production, where the yarns are tightly wrapped in
yarn tubes. Unfortunately, when the bobbins are transferred
to the next stage, yarn residues remain in the head, middle,
or tail of the yarn tubes, increasing the costs and reducing
the production efficiency. Therefore, aiming to address this
challenge, a vision-based detection system was developed to
automatically indicate the residents in the bobbing machines
and notify the system about the event. More specifically, the
algorithm separates the image into RGB channels, next apply
gradient-based feature extraction in the three channels, and
finally compares the results against predefined thresholds to
detect the residents. This system was tested in a real-scale
bobbin pipeline, achieving a timing of 30ms and an error
rate of 2% [11]. However, apart from the visual inspection
of the bobbin machines, there are advancements in the yarns’
quality check process. The machine vision technology is used
to extract the yarn’s characteristics and identify the defects
such as thin or thick places and neps [12]. Li et al. propose
a diameter image processing unit (DIPU) that continuously
captures yarn images, analyzes the sequential sampling of
their points, and finally measures the hairiness and defects
using image subtraction techniques [13].

2) Weaving: It is well known that defect detection is
difficult during production by experienced operators, but
there are advancements in industrial knitting processes. Nev-
ertheless, as hall or laddering defects are easily detectable
by in-situ systems, operators still identify stripes after the
production. Therefore, a method was developed to identify
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(a) The yarn production stage (b) The weaving Stage (c) The dyeing and additive
sewing stage

(d) The finishing stage

Fig. 1: The textile manufacturing factory is segmented in four production stages.

the stripes in circularly knitted fabric to minimize the time
retrieval between production and human-based stripe quality
processes. The algorithm improves the quality of the image
with Gabor and Matched filters, extracts visual features using
different extraction techniques, e.g., local binary patterns
(LBPs), histogram of oriented gradients (HOG), or gray level
co-occurrence matrix (GLCM), and classifies the defects
using a support vector machine (SVM) or random forests.
It was shown that the extracted descriptors from LBM and
GLCM perform better than HOG ones, highlighting how the
visual features’ choice affects the method’s efficiency [14].

In weaving loom machines, a vision-based pipeline was
developed to adjust the speed of the loom shaft reducing the
defects of the fabrics. Its sub-system identified the variance
of the fabric’s density between two sequence points compar-
ing the corresponding GLCM features. This way, a machine’s
speed adjustment was achieved [15]. Moreover, algorithms
that categorize the most common fabric defects have also
been proposed. non-complex algorithm was developed to
detect tissue defects based on histogram equalization in gray-
scaled images using cumulative distribution function (CDF),
but this method cannot be applied in the manufacturing
environment due to its low accuracy (90%) [16].

Automatic sewing machines are used in fabric factories to
reduce costs. Unfortunately, one of the most common defects
is the faulty lattice weave patterns, commonly occurred in
the swing zone. To tackle this challenge, a vision-based
framework was proposed to track individual fabric threads
providing their position and orientation while discovering
repetitive lattice faults. The detection of the blobs was
achieved by the maximally stable extremal region (MSER)
method, and description vectors were generated through the
binary robust invariant scalable keypoints (BRISK) algorithm
[17]. Compared with other systems, the vision-based ones
achieve lower rotation tracking errors while operating in real-
time [18].

Other advanced techniques were developed to tackle the
diversity of the patterned fabrics. In particular, this challenge
was mainly addressed using sequential detection of image
defects. Additionally, the fabric frames were segmented into
blocks thanks to the pattern’s frequency. Finally, the defect

position was indicated through feature dictionary construc-
tion techniques, i.e., GLCM and LBP, and feature matching,
achieving better performance than other modern non-negative
matrix factorization techniques, while the computational
complexity was also reduced [19]. A different approach
was proposed by Li et al., which was based on biological
vision modeling. The mechanism was simulated to represent
fabric images with complex textures. The low-rank repre-
sentation technique integrated with Laplacian regularization
and dictionary learning provided a detailed saliency map
wherein the defects were highlighted. The method’s effi-
ciency was improved using a linearized alternating direction
technique with an adaptive penalty (LAD-MAP) to solve the
constructed models enhancing the detection timing around
60% compared against the alternating direction method of
multipliers (ADMM) [20].

Concerning deep learning approaches in the field and
considering the limitation of available datasets due to the
time-consuming and high-cost processes, an image-to-image
translation framework was proposed that uses generative
adversarial networks (GANs) to synthesize new defect in
fabrics. Tests exhibited that the generated color-sensitive
fabrics were more realistic using U-Net architecture than
ResNet in model training [13].

3) Dyeing and additive processes: Traditionally, the third
step of fabric manufacturing includes dyeing processes, i.e.,
where the desired color is given to the whole fabric. How-
ever, during the literature review, we observed no significant
advancement in the specific procedure using a machine
vision system. Therefore, instead of that, there are additive
color and sewing stages that are further described. More-
over, due to the fabrics’ distortion, the textile printing is a
challenging procedure that leads to poor quality of products.
To tackle this challenge, Ren et al. proposed a novel fine-
grained digital printing system based on machine vision
techniques to align the printing-head onto the non-planar
fabrics in a continuous manner. Furthermore, the system
analyzed the product’s deformability by extracting visual
features with a Gabor filter and generating a probability map
with random forest classification. As the last step, a trans-
formation matrix was calculated to correct the printing-head
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Paper Year Category Environment Machine/Process Prod. Stage Decision HI AI Int.

[14] 2016 Knitting Defect Detection Laboratory Circular Weft Knitted Fabrics Weaving Identify no no no
[15] 2017 Loom Defect Detection Laboratory Weaving Loom Fabric Weaving Action no no no
[21] 2017 Self-adaptable Correction Industrial Printing Machine Dyeing Action no yes no
[18] 2018 Individual Blood Identification Industrial Sewing machines Weaving Identify no no no
[20] 2018 Defect Detection Laboratory Weaving Loom Fabric Weaving Identify no yes no
[16] 2019 Defect Detection Laboratory Weaving Loom Fabric Weaving Identify no no no
[11] 2019 Resident Detection Industrial Boobing Machines Yarn Identify no no no
[19] 2020 Defect Detection Laboratory Weaving Loom Fabric Weaving Identify no no no
[22] 2020 Yarn Defect Detection Laboratory Boobing Machines Yarn Identify no no no
[23] 2020 Self-adaptable Correction Laboratory CNC sewing mahcines Dyeing Action no no no
[24] 2020 Characteristic Identification Laboratory Quality control Finishing Classify yes yes no
[25] 2020 Edge Detection Industrial Quality control Finishing Identify no yes yes
[26] 2020 Edge Detection Industrial Quality control Finishing Identify no no no
[27] 2020 Characteristic Identification Laboratory Quality control Finishing Classify yes yes no
[13] 2021 Defect Creation Laboratory Weaving Loom Fabric Weaving Create no yes no

TABLE I: Demonstration of all the textile-related papers included in our review, presenting the problem category, the tested
samples, as well as several method and system details. The acronyms HI, AI, and Int. are used for Human Intervention,
Artificial Intelligence and Integration, respectively.

movements, achieving prints in an area of 0.12m2 in less than
4 seconds into full-embroidery and lace fabrics [21]. Apart
from the colored fabric needs, the market requires different
embroidered seam patterns onto the fabrics. As in the above
challenge, the computerized numerical control (CNC) sewing
machines should be accurate during their actions despite
the condition of the fabrics. A contemporary vision-based
pipeline was proposed by Geller et al. that identified the seam
patterns, then identified the stitch positions, and finally, the
CNC sewing machine was automatically corrected. This way,
the faulty distances between the planned and real additive
actions were eliminated [23].

4) Finishing: Throughout the last step of textile manufac-
turing, fabrics are strengthened with unique characteristics
via chemicals. As the fabric smoothness appearance is a
crucial characteristic affecting the quality of the products, a
multi-camera system was proposed that identifies the texture-
less fabrics [24]. More specifically, it was based on the
structure-from-motion (SFM) and patch-based multi-view
stereo (PMVS) techniques to reconstruct the fabric’s surface,
the model of bag-of-visual-features to extract the salient
elements of the wrinkled fabric, and a k-nearest neighbor (k-
NN) classifier to identify the fabric smoothness. This way,
a recognition rate of 93.3% was achieved [24]. Besides, a
more complex framework for the same classification problem
was introduced in [27], wherein the smoothness assessment
was based on a pre-processing algorithm, a convolutional
neural network (CNN) architecture, and a label smoothing
component. The proposed model was composed of five
individual layers, viz. convolutional, max pooling, batch
normalization, shortcuts, and rectified linear unit (ReLU)
activation one, while a fully-connected was its last layer.
As a result, the model extracted robust features for fabric
smoothness requiring significantly less time than other CNN
architectures, while achieving high accuracy, reaching a score
of 95.38% under errors of 0.5 degrees [27].

After the chemical processes, the majority of the fabrics
are damaged at the edges. An edge detection methodology

based on Canny’s algorithm combined with Huff’s line
detection pipeline was introduced [25] to reduce the faulty
shipped textile products. It was proven that the vibration
and noise did not affect the edge detection while the system
could transmit data in real-time [25]. Researchers developed
a system suitable for synthetic leather manufacturers using
the Otsu and Sober edge detection methods to identify
the abnormalities regarding the edge crimping defects. The
system was tested for 30 dates and achieved a 95% accuracy
score with rollers moving speed at 0.6m/s [26].

IV. DISCUSSION

Our review analysis showed the indications that clarify
how the machine vision technology adapts to the era of
the fourth industrial revolution and its benefits in textile
manufacturing. The evidences were further analyzed to the
following three subsections, categorized in: current stage,
trends and future directions.

A. Analysis

The textile industry is characterized by repetitive auto-
mated actions and quality-related applications that are the
basis of mass production and reduced defects. From the raw-
fibers sewing stage to fabric creation, the isolated production
systems create data processed to offer valuable information to
the operators or other centralized management systems. Ma-
chine vision systems are used to capture contextual images
from the fabrics. The images’ quality is improved with filters
and advanced computer vision techniques, processed with
intelligent, machine, and deep learning pipelines to finally
provide information about the characteristics and quality
of the fabrics. Furthermore, machine vision technology is
also applied in frameworks to personalize the products and
improve their quality.

Through the survey, we indicate the important points of
the described applications and methods in Sec. III following
a structured database as presented in Table I. The various
categories of vision-based systems in textile manufacturing
are grouped. Our structured database includes information
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about the applied application’s “environment” (industrial or
laboratory), the facing challenge “category,” the involved
“machine or process,” and some other characteristics which
represent the maturity level of the system’s intelligence,
including “artificial intelligence” appearance, “human inter-
vention” (HI), “integration” with other vital systems among
others. According to the review analysis, it is notable that
vision-based research is mainly focused on the weaving
(46,6%) and finishing (26,6%) production stages in contrast
with the small adoption percentages of yarn (13,4%), as well
as dyeing and additive (13,4%) processes.

B. Trends

We do not come across machine vision systems as part
of the dyeing process, making sense as the dying quality
control systems are explored in previous decades, eliminating
the color defects. In contrast, the current trend includes
systems that try to capture the deformability of the fabrics
to be adapted to the movements of the second layer sewing
CNC [21] or printing machines [23].

In the weaving manufacturing stage, where the yarns are
transformed into fabrics, this study proves that the vision-
based systems are used for defect detection in complex
patterned fabrics [14], [16], [18] or individual threads [18]
and self-adjustments action, such as speed adjustment of
loom machines [15]. Apart from that, we believe that learned
features should be further applied to the functions of the
industrial sewing machines, reducing the quantities of fabric
defects.

AI provides “thinking” capabilities in the machine vision
systems to classify or predict situations that have not ever
met before. As Table I presents, in the examined five years,
it is clear that two out of five papers include AI capabilities,
a notion that is indicated in the automotive manufacturing
review [28]. However, from 2016 to 2018, 29% of them
utilize AI techniques, while 50% of the reviewed papers
use the machine- or deep-learning methodologies [24], [25],
[26], [27], [13]. As the adoption of AI is significantly
increased, researchers explore the following generation of
training architectures, such as federated learning and edge-
based learning. In contrast with the automotive manufactur-
ing review analysis [28], this study proved that the textile
manufacturers may not trust the intelligent machine vision
system as the majority of the developed systems was tested
in laboratory environment. From 2016 to 2018, around 40%
of the papers were applied in the industrial environment.
However, this rate was decreased to 25% in the following
two years, as presented in Table I. The authors believe that
this trend occurred due to the lack of understanding of how
machine vision technology can improve the efficiency of
production procedures under the umbrella of industry 4.0.

C. Future Direction

Machine vision is a technology that can be characterized as
the “eyes” of industry 4.0 and can provide valuable insights
about the status, the progress, and the defects of the fabrics,
through the production in real-time. Based on the results

presented in Table I, open challenges are identified and dis-
cussed in the following paragraphs. In addition, some of the
analyzed solutions fulfill the “through-engineering solution”
characteristic of industry 4.0, where innovative techniques
from other industries are used in textile manufacturing. The
biological visual-based method is a modern technique for
complex and pattern fabrics that offers a new solution to
the manufacture [20]. Although the solution has been only
applied in a laboratory environment, it has to be tested in
industrial infrastructures as well as in the weaving production
procedures. In the finishing process, one of the examined
systems, viz. fine-grained digital printing system, can be
considered as an essential tool as it provides self-adaptable
actions based on the fabric conditions enabling customization
features that produce personalized fabrics [21]. Furthermore,
the philosophy of self-controlled and self-adaptable function-
alities should also be adapted in the other manufacturing
stages such that machines shall modify their operating setting
to put right the production or possibly self-modify the fabric
defects. Finally, it is remarkable to highlight that almost
all the papers (except [25]) do not refer to communication
with other systems on their main bodies or future directions
of them, which means that the integration (horizontal or
vertical) in terms of industry 4.0 does not a priority in
their design. The authors believe that the interoperability and
integration of machine vision and cyber-physical systems
should be explored in the textile manufacturing industry
to enable reliable autonomous decision-making architectures
based on multi-data sources.

V. CONCLUSION

The state-of-the-art analysis conducted on this paper ex-
plored the applied vision-based applications within textile
manufacturing and how the fabric industries utilize the
machine vision techniques to improve the factory’s efficiency
while reducing the defects. During our study, textile-based
papers were examined to identify the unique and the most
common features. As a result, machine vision technology
is mainly used for quality-related purposes; however, some
advancements promote self-adjustment actions and one-batch
production. Yet, the horizontal and vertical integration across
the factory is not a design priority in the latest vision-based
applications and should be explored by the research commu-
nity in the following years. Hence, the role of machine vision
in garment manufacturing and human observation within
factories have been left for the future, where a more profound
analysis of the maturity level will be explored.
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