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a b s t r a c t

A key feature in the context of simultaneous localization and mapping is loop-closure detection, a
process determining whether the current robot’s environment perception coincides with previous ob-
servation. However, in long-term operations, both computational efficiency and memory requirements
involved in an autonomous robot operation in uncontrolled environments, are of particular importance.
The majority of approaches scale linearly with the environment’s size in terms of storage and query
time. The article at hand presents an efficient appearance-based loop-closure detection pipeline, which
encodes the traversed trajectory by a low amount of unique visual words generated on-line through
feature tracking. The incrementally constructed visual vocabulary is referred to as the ‘‘Bag of Tracked
Words." A nearest-neighbor voting scheme is utilized to query the database and assign probabilistic
scores to all visited locations. Exploiting the inherent temporal coherency in the loop-closure task, the
produced scores are processed through a Bayesian filter to estimate the belief state about the robot’s
location on the map. Also, a geometrical verification step ensures consistency between image matches.
Management is also applied to the resulting vocabulary to reduce its growth rate and constraint
the system’s computational complexity while improving its voting distinctiveness. The proposed
approach’s performance is experimentally evaluated on several publicly available and challenging
datasets, including hand-held, car-mounted, aerial, and ground trajectories. Results demonstrate the
method’s adaptability, which retains high operational frequency in environments of up to 13 km and
high recall rates for perfect precision, outperforming other state-of-the-art techniques. The system’s
effectiveness is owed to the reduced vocabulary size, which is at least one order of magnitude smaller
than other contemporary approaches. An open research-oriented source code has been made publicly
available, which is dubbed as ‘‘BoTW-LCD.’’

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Visual place recognition, an autonomous robot’s ability to
ecognize a familiar place in the environment using vision as
ts primary sensing modality, remains a demanding and well-
nown challenge in the research community [1,2]. It constitutes a
undamental building block in frameworks such as Simultaneous
ocalization and Mapping (SLAM), where the system needs to
uild a map of its surroundings while at the same time identify
ts position within the environment [3]. Since the importance of
n efficient and robust estimation is vital for achieving accurate
avigation, a wide variety of methods has been proposed that
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aim to map the world through exteroceptive sensors [4,5]. De-
spite their tremendous effort, it is proven that even the most
accurate pose estimators are prone to errors given the noisy
sensory measurements, modeling inaccuracies, or field abnor-
malities. However, every time the robot returns to a previously
visited location and recalls it, there is the potential to rectify
the incremental pose drifts within a cost-function minimization
scheme. The identification of such an event is widely known as
loop-closure detection [6]. Loop-closure differs from localization
since it regards the task of discriminating between an already
visited location and a new one; hence, it plays a pivotal role in
map rectification. On the other hand, localization considers the
challenge of determining the robot’s pose in an existing map. The
detection of consistently accurate loop-closure events constitutes
a primary goal of modern autonomous systems.

In appearance-based approaches, which consider image-to-
image matching, the perception system (camera) usually at-
tempts to construct a map of the environment based on unique

and distinctive visual local features [7–13]. The detection and
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escription of the regions-of-interest can provide a compact and
etailed representation of the incoming visual stream. The uti-
ization of such key-points has been proven highly robust against
mage deformations (e.g., scale, rotation, and viewpoint change)
r occlusions [14]. When the query camera measurement (i.e., the
urrent robot view) is recorded, the system tries to match the ob-
erved location with the database (i.e., the currently formulated
ap). This is achieved by searching the most similar entry based
n the visual information provided by the extracted regions-of-
nterest. However, nowadays, loop-closure detection algorithms
ave to provide robust navigation for an extended period. Hence,
he computational efficiency and the storage requirements are
ital factors for recognizing previously visited areas during long-
erm and large-scale SLAM operations. As most pipelines scale
inearly with the environment’s size, constituting a limitation
or resource-constrained platforms, such as Unmanned Aerial
ehicles (UAVs), especially in the case that raw local descriptors
re used for image representation. Therefore, there has been great
nterest in developing compact appearance representations that
emonstrate sub-linear scaling in computation time and storage
equirements.

The Bag of Words (BoW) model, applied initially to text re-
rieval [15], is established as a primary tool to tackle the place
ecognition task [16–25]. Quantizing a batch of key-point de-
criptors through a training procedure, typically via k-means
clustering [26], yields the vocabulary’s visual words [27]. A fixed-
size vocabulary is produced, which is then used as a vector
quantizer to categorize extracted descriptors of both query and
database images. Loop-closure events are indicated by compar-
ing similarities between such histogram representations. BoW
approaches offer high performance, as well as computational
efficiency. Nevertheless, their success is highly dependent on the
quality of the visual vocabulary and, in turn, the sufficiency of the
available training data. Even if a generic learning set is available,
with an abundance of different visual cues, false detections can
still arise when applied to environments with fine visual charac-
teristics which are not distinguishable due to the finite number
of present visual words. In those cases, the vocabulary needs to
be trained from scratch using images captured in the same en-
vironment. Various available techniques rely on the formulation
of a purely incremental visual vocabulary, which is computed
each time the robot attempts a new mission to obviate such
dependencies and cope with these issues [28–37]. Such pipelines
utilize voting schemes to highlight pre-visited locations by identi-
fying map entries with the most common correspondences owing
to their database construction nature. Such algorithms typically
reduce the storage footprint, and consequently, memory con-
sumption, in the expense of computational complexity to achieve
high performance. As a final note, contemporary appeared meth-
ods [38–40] use Convolutional Neural Networks (CNN), which are
initially trained for object recognition, to address the visual place
recognition task; thus, tightly bound to their learning examples’
attributes [41]. Specific network layers are treated as image de-
scriptors, whereas matches are detected based on their distance
metric. Despite their high performances, these approaches are
known for their excess demand in computational resources [42],
while their feature extractor is viewpoint-dependent since the
spatial information is excluded from global descriptors. As a
result, they remain incompatible with most real-time SLAM appli-
cations over resource-constrained platforms (including battery-
powered aerial, micro-aerial, and ground vehicles), as indicated
by [43].

Our interest lies in developing a low-complexity and proba-
bilistic appearance-based loop-closure detection framework that
identifies previously seen locations thanks to an incremental

BoW method based on feature tracking, viz., the Bag of Tracked d

2

Words (BoTW), thus avoiding any pre-training procedure. The
well-known Kanade–Lucas–Tomasi (KLT) point tracker [44] is
utilized to formulate such a vocabulary, accompanied by a guided
feature selection technique. Each point whose track ceases to
exist is transformed into a tracked word used to describe every
key-point element contributing to its formulation. The query’s
tracked descriptors seek for the Nearest-Neighboring (NN) words
into the vocabulary to detect loop-closures, distributing votes
across the traversed path. Each voted location is assigned with a
similarity score through a binomial Probability Density Function
(PDF), which is meant to indicate candidate matches.

We further introduce modeling mechanisms that significantly
improve our framework’s memory usage and computational com-
plexity compared to other modern solutions. Our approach’s im-
plementation blocks are discussed in detail to justify its effec-
tiveness better and enhance its reproducibility. The unchecked
generation of new elements in incremental vocabulary methods
affects the systems’ performance since these new entries reduce
their distinctive ability, especially in cases where the robot tra-
verses pre-visited locations. Our method applies a map manage-
ment scheme that restricts similar words during the vocabulary
construction to address such a deficiency.

Moreover, loop-closure detection is a task submitting to a
temporal order of the visited places along the navigation route.
If a location is identified as pre-visited, then it is highly probable
that the following ones have also gone through. This property
is explored in the proposed approach by employing a Bayes
filter, accompanied by a temporal consistency constraint, over
the probabilistic scores produced through the binomial PDF. We
specifically exploit the temporal information of the incoming vi-
sual stream to decide about the appropriate belief state. This way,
an improvement in recall rate is achieved since locations within
a known area are not excluded even if they present a lower simi-
larity than the defined threshold. Lastly, a geometrical verification
step is performed over the most similar candidates. The proposed
method is tested on nine different environments in a broad
set of conditions and compared against various state-of-the-art
methods (both incremental and pre-trained).

As a final note, intending to serve as a benchmark for the
research community, an open-source implementation of the pre-
sented work is available, under the title ‘‘Bag of Tracked Words-
mapping for Loop-Closure Detection’’ (BoTW-LCD).1 From the
user’s perspective, the framework consists of two major parts: (1)
the vocabulary-building block that takes raw visual sensory data
and maps the environment and (2) the query procedure, where
the system searches for loop-closure events.

The remainder of this work is organized as follows. Section 2
discusses the related studies in the field of appearance-based
loop-closure detection. In Section 3, the proposed vocabulary
construction is described in detail, while the recognition pro-
cess is clarified in Section 4. Section 5 presents the method’s
experimental evaluation and comparative results against other
state-of-the-art approaches. Conclusions and possible extensions
to our approach are outlined in Section 6.

2. Related work

In this section, a focused discussion on the most representative
techniques in the field of appearance-based place recognition is
presented. According to the vocabulary generation process, the
literature is distinguished into two main categories: off-line and
on-line, to guide the reader in placing the proposed method
within the state-of-the-art.

1 The reader can download and review an implementation of BoTW-LCD at:
ttps://github.com/ktsintotas/BoTW-LCD. Following an extensible and modular
esign, the algorithm’s components are organized in Matlab functions.



K.A. Tsintotas, L. Bampis and A. Gasteratos Robotics and Autonomous Systems 141 (2021) 103782

2

s
w
v
c
i
i
v
(
b
T
t
u
M
i
a
T
t
e
t
t
C
v
l
o
f
c
f
t
T
i
d
b
c
r
a
l

d
w
[
f
e
v
s
a
t
t
W
m
r
i

2

a
n
t
p
e
v
t
w

.1. Off-line approaches

Comparisons between local features inevitably increase any
ystem’s computational cost, particularly for mobile robots,
here the incoming visual stream captures highly textured en-
ironments [45]. As a result, most of the literature addresses the
hallenge of appearance-based loop-closure detection by adopt-
ng the BoW model. This is owed to its proven effectiveness
n computational speed, primarily when combined with an in-
erted indexing file system [46]. Fast Appearance-Based MAPping
FAB-MAP), a standard for loop detection, tackles the problem
y utilizing a vocabulary generated by Scale-Invariant Feature
ransform (SIFT) descriptors [47]. Also, a Chow Liu tree learns
he co-occurrence probabilities among visual words [48]. Contin-
ous Appearance-based Trajectory Simultaneous Localization and
apping (CAT-SLAM) extends the FAB-MAP by utilizing odometry

nformation [49], while the method proposed by [50] adopts
n improved scoring technique for BoW approaches known as
erm Frequency - Inverse Document Frequency (TF-IDF). Aiming
o discriminate the vocabulary’s entries, description vectors for
ach location are created, where each element is proportional
o the ratio between the number of word occurrences within
hat location and the total of words in the entire learned bag.
omparisons between images are made by finding their TF-IDF
ectors’ distance. An improved approximation was introduced
ater [16], allowing the system to scale by more than two orders
f magnitude [18]. By grouping landmarks through the local
eatures covisibility during navigation, location graph-models are
reated in [21]. During a query event, the graph is browsed
or clusters of landmarks that share substantial similarity with
he query, while evaluation is performed through a Bayes filter.
his method exhibits an inherent ability to cope with variations
n the robot’s trajectory, including irregular changes in speed,
irection, and viewpoint. [19] presented a method based on a
inary vocabulary, successfully constructed through k-means++
lustering [51]. The system’s false detections are significantly
educed due to geometrical and temporal checks. Similarly, this
pproach’s extension utilizes rotation invariant and scale-aware
ocal features on a keyframe-based SLAM system [20].

While the methods mentioned above address the loop-closure
etection task as a single image matching process, recent frame-
orks introduced the concept of sequence-to-sequence matching
52–55]. These techniques take advantage of the additional in-
ormation provided by a group of images in a scene, treating
ach sequence as an aggregation of image description vectors or
isual words. In [22], the incoming visual sensory information is
egmented into fixed-size groups of images and represented by
common visual-word-histogram. Using a quantitative interpre-
ation of temporal consistency, sequence-to-sequence matches
hat are coherently advancing along time are enhanced [23].
hen employing the BoW model in SeqSLAM [56], one of the
ost acknowledged methods in the field of sequence-based place

ecognition, a robust system against scale and rotation variations
s provided [57].

.2. On-line approaches

Off-line vocabulary building methods typically use clustering
lgorithms, which require various heuristic parameters (e.g., the
umber of clusters in the vocabulary or some sort of distance
hreshold to define different sample groups). Finding adequate
arameters for an optimum vocabulary is a tedious task that gen-
rally involves multiple trial-and-error iterations. For instance, a
ocabulary with too many elements would not satisfy abstrac-
ion properties to measure similarities between images correctly,
hist a vocabulary with not enough words would inevitably
3

merge visual information from different entities due to the wide
quantization intervals. Incrementally building a visual vocabulary
entails ‘‘learning’’ the environment in which the agent acts. This
concept was introduced by [28], who described a place recog-
nition system, the vocabulary of which was generated on-line
to address the localization task. In an extension of this work,
two visual vocabularies (one representing image descriptors and
another for color histograms) were created incrementally to de-
tect loop-closures in a Bayesian filtering scheme [29]. In this
method, the candidate matches were validated when the epipolar
geometry constraint was satisfied. An on-line vocabulary was
also proposed by [30], which utilized a sliding window over the
image stream to match between SIFT features. [31] followed the
incremental fashion, and proposed a visual vocabulary whose
words were generated using a modified version of agglomerative
clustering. A loop-closure detection approach for large-scale and
long-term autonomy, entitled Real-Time Appearance-Based Map-
ping (RTAB-Map), was proposed by [32], with direct application
in SLAM systems. Since mobile robots have limited comput-
ing resources, this solution’s main contribution was related to
a memory management mechanism that constrained the map’s
size, allowing the detections to be established under a fixed
time limit. In the IBuILD algorithm [33], Binary Robust Invariant
Scalable Key-points (BRISK) were matched across consecutive
images yielding a binary vocabulary. A likelihood function is max-
imized based on the visual words’ occurrence frequency in images
during query time, while inconsistent loop-closure hypotheses
were filtered out through a temporal consistency check. Similarly,
binary codewords were learned from adjacent images via linear
discriminant analysis [34]. Integrated into the incremental BoW
pipeline of IBuILD, this technique provided reliable loop hypothe-
ses. In the Hierarchical Topological Mapping (HTMap) approach
of [58], images with similar visual properties were stored in
groups according to places, formulating a hierarchical architec-
ture. Each place was represented by a global descriptor, which
summarized the visual information of the traversed locations.
Firstly, the algorithm selected the candidate loop-closing place by
comparing the query’s global descriptor with the incrementally
created map. The most likely match was retrieved through an ex-
tensive search in the local features space, followed by a geometric
consistency test. The same authors recently introduced a new ap-
proach in which dynamic islands were used to group the images
based on Spatio-temporal similarity [36]. For efficient indexing,
the local features’ binary description space in [12] was succes-
sively clustered in the form of a tree. Likewise, in our previous
work, a dynamic sequence segmentation was performed based
on the images’ content proximity resulting in the places’ formu-
lation [35]. The accumulated descriptors were processed into the
growing neural gas clustering mechanism for the corresponding
visual words’ generation [59]. A voting scheme was adopted to
highlight the most similar database instances, while a proba-
bilistic score indicated the candidate matching place [60]. The
most appropriate detection was selected from an image-to-image
search through temporal and geometrical checks, providing a
higher level of discrimination. Places’ representation was incre-
mentally learned in [61] using a modified version of growing
self-organizing maps [62], along with gist features. During the
query, the maximally active neuron was searched and retrieved as
a loop-closure candidate. The Fast and Incremental Loop-closure
Detection (FILD) method presented an incremental graph-based
CNN feature vocabulary [63]. The method was proposed for a
SLAM architecture, and local key-points are also extracted to sup-
port the system, while the graphics processing unit was utilized
to cope with the computationally demanding deployment of the
CNN.
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. Bag of tracked words

.1. Overview

Unlike most of the approaches mentioned above, the proposed
ne does not require any training process or environment-specific
arameter tuning since the map is built on-line in the course
f the robot’s navigation. As the construction of the vocabulary
lays the primary role in the proposed visual loop-closure de-
ection pipeline, it has to be as discriminable and detailed as
ossible. Our trajectory mapping is based on the observation
hat the traversed path is associated with unique visual words
enerated on-line. On the contrary, through the BoTW scheme,
ach codeword is initiated by a local key-point tracked along the
rajectory in consecutive camera frames. An algorithm with scale-
nd rotation-invariant properties has been adopted to obtain
robust and accurate description against image deformations.
verall, the map representation during the robot’s navigation
onsists of four individual parts: (i) feature tracking, (ii) guided
eature selection, (iii) tracked word generation, and (iv) merging
ords.

.2. Feature tracking

Feature tracking is essential for several high-level computer
ision tasks such as motion estimation, structure from motion,
nd image registration. Since the earliest works, feature trackers
ave been used as a standard tool for handling feature points in
sequence of images. We have chosen to map the trajectory,

hrough a tracker based on the Speeded-Up Robust Features
SURF) [9]. Each SURF element has a detection response that
uantifies its distinctiveness among the rest of the image’s con-
ent. This property is used to select the most prominent local key-
oints in the image. Thus, intending to promote computational ef-
iciency, we limit the number of features to be used to the ν most
prominent. Those key-points (Pt−1 = {p1

t−1, p
2
t−1, . . . , p

ν
t−1}) from

the previous image It−1, along with the current camera frame It ,
are utilized within a KLT point tracker, to obtain their projected
location, which we refer to as Tracked Points (TPt = {tp1

t , tp
2
t , . . . ,

tpν
t }). Additionally, we retain the corresponding set of descrip-

tion vectors (Dt−1 = {d1
t−1, d

2
t−1, . . . , d

ν
t−1}) that are meant to be

matched with the corresponding ones (Dt ) in It .

3.3. Guided feature selection

Although KLT is sufficiently effective in estimating a detected
point’s flow between successive frames (e.g., It−1 and It ), accu-
mulative errors within the entire image-sequence may drift the
Tracked Points. Furthermore, as the algorithm progresses over
time, points can be lost due to lighting variations, out-of-plane
rotations, or articulated motions. Points have to be periodically
redetermined to track features over a long period. Having ap-
prehended these challenges, we adopt a guided feature selection
technique [64–67] (Fig. 1) that, along with the KLT’s flow estima-
tion, also detects new SURF key-points (Pt = {p1

t , p
2
t ,. . . ,p

µ
t }) and

computes the corresponding description vectors (Dt = {d1
t , d

2
t ,. . . ,

dµ
t }) from the most recent frame It . Note that we retain only the

µ most prominent detected feature points with a response higher
than Φ , to reduce computational complexity further. A NN search
is performed between the Tracked Points’ coordinate space (TPt )
detected in image It and the ones in Pt . Thus, for each tracked
point tpi

t , the nearest pNN
t ∈ Pt is accepted as a proper extension-

member of the track, providing that the following conditions are
satisfied:
4

Fig. 1. Guided feature selection over the points being tracked. The Kanade–
Lucas–Tomasi [44] tracker estimates the expected coordinates for each of the
Tracked Points (TPt = {tp1

t , tp
2
t , . . . , tp

ν
t }), originated from the previous image

t−1 , to the current one It , (the green and red crosses (+), respectively).
Their nearest-neighboring points pNN

t ∈ Pt , detected via speeded-up robust fea-
tures [9], are evaluated as per their points’ coordinates and descriptors distance
for the proper feature selection using Eqs. (1) and (2). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

− the Euclidean distance between tpi
t and its corresponding

pNN
t is lower than α:

ℓ2(tpi
t , p

NN
t ) < α, (1)

− the Euclidean distance between its descriptor dNN
t and the

di
t−1, corresponding to pi

t−1 in the previous image It−1, is
lower than β:

ℓ2(di
t−1, d

NN
t ) < β. (2)

If at least one of the above conditions is not met, the correspond-
ing track point ceases to exist, and it is replaced by a new one
detected in It , ensuring a constant number of ν TPt members.
imilarly, aiming to preserve a constant set of points during the
obot’s navigation, when a tracked feature is discontinued (re-
ardless of whether it forms a tracked word or not), it is replaced
y a new one, fished out from It . This way, the computationally
ostly brute force local features’ matching as tracking scheme is
voided, while a robust trajectory mapping is achieved.

.4. Tracked word generation

The next step of the BoTW procedure is the descriptors’ merg-
ng, which, in turn leads to the formulation of the visual code-
ords. When the tracking of a certain point terminates, its total

ength τ , measured in consecutive frames, determines whether
new word should be created (τ > ρ). Describing part of the
nvironment, the representative tracked word is computed as the
edian of the tracked descriptors:

W̃[i] = median(d1[i], d2[i], . . . , dj[i]), (3)

here dj[i] denotes the element in the ith (SURF: i ∈ [1, 64])
imension of the jth (j ∈ [1, τ ]) description vector. Note that,
e refer to the tracked word set as a visual vocabulary since
ach codeword is created through an average representation, as
t evident in Eq. (3) of [68], which is also the norm for a typical
oW representation. In general, new codewords are generated
hrough averaging the corresponding descriptors, yet in the pro-
osed approach, the median is selected since it provides better
erformance with lower computational cost as evidenced by the
xperimental evaluation in Section 5. Finally, an indexing list Idx
s retained that includes the positions upon which each tracked
ord is located in the respective image.
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.5. Merging words

Finally, to provide a discriminative visual vocabulary, we avoid
dding new visual elements into the vocabulary without com-
aring their similarity to the database. In the proposed sys-
em, an additional preliminary step is incorporated. For each
ewly generated element, a one-vs-all scheme computes the
airwise distances against the database’s ones. Subsequently, the
earest-Neighbor Distance Ratio [7] is applied, indicating two vi-

sual elements as similar when a distance ratio value lower than
0.5 is satisfied. The tracked descriptors of the newly created
element and the vocabulary’s chosen word are merged based
on Eq. (3), and the new codeword is ignored. However, in Sec-
tion 4.6, we further propose a vocabulary management scheme
in which visual words corresponding to already visited locations
are discarded, resulting in an overall reduced memory footprint.

4. Probabilistic loop-closure detection pipeline

In this section, our probabilistic framework for the identifica-
tion of loops within BoTW-LCD is presented. The voting proce-
dure is being described as the first step of the proposed on-line
pipeline. Subsequently, we show how the locations are assigned
with a probabilistic score through the binomial PDF, while the
derivation of the Bayes filtering scheme used for the estimation
of the loop-closure state is also detailed. Finally, we focus on the
additional implementation details we adopted for incorporating
geometrical verification and visual vocabulary management.

4.1. Searching the database

With the aim to perform reliable searching during query, the
newly acquired frame IQ should not share any common features
ith recently visited locations. This is owed to the fact that a
et of input images obtained within a short time interval before
rabbing IQ are expected to be similar to it, yet they should not
e considered as loop-closure events. To prevent our pipeline
rom detecting such cases, we consider a temporal window w,
hich rejects locations visited just earlier (IQ−1, IQ−2, . . . , IQ−w).
e define this window as w = t − 4c , where c corresponds to

he length of the longest active point track, as indicated by the
etained τ values. In this way, it is guaranteed that IQ will not
hare any visual information with the recently created database
ntries, while at the same time, we avoid the use of a fixed tim-
ng threshold that is typically selected by environment-specific
xperimentation.
Due to the lack of description histograms, the proposed

ppearance-based framework adopts a probabilistic voting
cheme to infer pre-visited locations. At query time, the most re-
ent incoming sensory data IQ directly distributes its descriptors
formulated by guided feature selection – to the database via a
-NN (k = 1) search among the available database tracked words
n a brute force manner. In order to accelerate the matching
rocess, many approaches build a k-d tree [69]. While offering
n increased computational performance when applied to a low
imensional descriptor space, the tree is unsuitable for on-line
eveloped vocabularies. This is owed to possible unbalanced
ranches and the addition of new descriptors after the tree
onstruction, impairing the performance [70]. Moreover, during
n-line navigation, the complexity concerning the tree building
ill eventually prevent real-time processing, especially in large-
cale environments containing thousands of images [71]. Besides,
ur descriptor has a 64-dimensional feature vector, and the k-d

tree is unable to provide speedup over the exhaustive search for
more than about 10-dimensional spaces [7]. A valid alternative
5

Fig. 2. Probabilistic appearance-based loop-closure detection. During a query
event, the most recently obtained image directly distributes its descriptors,
formulated by guided feature selection, to the Bag of Tracked Words list via a
greedy nearest-neighbor search. Votes are assigned to the map L, whilst a vote
counter for each location l ∈ L increases relatively to the contributing words
(colored cubes). Finally, candidate locations are indicated via a binomial density
function according to their vote density xl(t). Highlighted with red, instances of
votes’ count correspond to locations that are intended for a geometrical check
since they satisfy the rareness limit th of a loop-closure, while also exceeding
the expected vote aggregation value. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

for high dimensional descriptors, as well as for larger vocabular-
ies, is the inverted multi-index file system [72]. This technique is
multiple times faster compared to a k-d tree while offering similar
performance. However, it needs to be trained beforehand, im-
practical for incremental approaches within a SLAM framework.
Aiming to improve the descriptor matching speed, an incremental
feature-based tree is proposed by [73], which is still incompatible
with our framework due to its boolean structure. Even though the
availability of indexing approaches, our work (see Section 4.6)
aims to map the environment efficiently. Therefore, we focus
on the significant reduction of the vocabulary’s size, as well as
the rate of its increment, reaching a footprint of one order of
magnitude shorter than other state-of-the-art techniques. As our
results in Section 5.5 suggest, using such a small vocabulary
renders the complexity of an exhaustive search inferior to the
overhead of retaining a dynamic indexing file system.

4.2. Navigation using probabilistic scoring

During the matching process among the query features from
IQ and the vocabulary, votes are distributed into the map L
under the tracked words’ indexing list Idx, as depicted in Fig. 2.
A database vote counter xl(t) for each traversed location l ∈
[1, t − 4c] increases in agreement with the associated words. In
order to decide whether a location corresponds to a possible
loop-closure event, most voting schemes use a threshold over
the accumulated votes. This is a straightforward method where a
single threshold value is selected through extensive experimen-
tation. Although such techniques could also be applicable here,
it is uncertain how the system would behave in cases where the
number of votes is not sufficient (e.g., due to low textured visual
information). To avoid the aforementioned simplified approach,
a binomial PDF is adopted to assign a score over each location
based on the votes’ density:

Xl(t) ∼ Bin(n, p), n = N(t), p =
λl

, (4)

Λ(t)
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here Xl(t) represents the random variable regarding the number
f accumulated votes of each database location l at time t , N

denotes the multitude of query’s tracked words (the cardinality of
TPQ after the guided feature selection), λ is the number of visual
elements included in l (the cardinality of TWl) and Λ(t) corre-
ponds to the size of the generated BoTW list until t (excluding
he locations inside the window w). The nature of the binomial
unction seeks for the rareness of an event. In cases where the
obot traverses a hitherto unseen location, votes should be ran-
omly distributed to their NN words in the database even if
hey are not accurately associated to an actually similar one. This
onstitutes a common event with high probability, meaning that
he locations’ vote density should be low. Ergo, the number of
ggregated votes for each database entry should obey a binomial
istribution (see Eq. (4)). Contrariwise, when confronting a pre-
isited environment, the corresponding votes casted for a specific
ocation increase. Thus, the random vote distribution expected
rom the binomial function would be violated. As a consequence,
he event would be considered of low probability with an in-
reased voting score. The binomial expected value of a location
has to satisfy a loop-closure threshold th, so as to be accepted:

r(Xl(t) = xl(t)) < th < 1, (5)

here xl(t) corresponds to the respective location’s aggregated
otes. However, to avoid cases where a location accumulates un-
xpectedly few votes due to extreme dissimilarities, the following
ondition should also hold:

l(t) > E[Xl(t)]. (6)

onditions (5) and (6) of binomial PDF are depicted in Fig. 2
hrough the light green and light orange areas, respectively.
he robustness of this metric to highlight loop-closure events is
emonstrated in our previous works [35,68]. In addition, with
he aim to avoid the redundant computation of probabilistic
cores for each traversed location (e.g., for completely unvoted
ntries), we propose to compute the binomial-based score only
or locations gathering more than 1% of the votes distributed by
he tracked descriptors.

.3. Location estimation via recursive Bayes rule

In a previous work of ours [35], a location is accepted as a
oop-closure detection when the systemmeets specific conditions
or a certain sequence of consecutive measurements. However
his technique presents the disadvantage that many loop hy-
othesis belonging at the starting point of a pre-visited area are
gnored until the temporal check is satisfied. With a view to tackle
his drawback, we take advantage of the temporally consistent
cquisition of images within the loop-closure task and adopt a
ayesian scheme. Even though this approach can be considered to
e a standard practice in the field [16,29,32,58,61,74] our system
iffers in the aspect that we chose to apply a simple temporal
odel which maintains the decision factor between consecutive
bservations, rather than to compute a probability score for each
atabase entry. The discrete Bayes filter allows us to deal with
oisy measurements and ensures temporal coherency between
onsecutive predictions, integrating past estimations over time.
espite the presence of the Bayesian filter, locations captured
n a sequence of loop-closing images are processed for further
valuation without being affected by their binomial-based score.
A proper filtering algorithm needs to maintain only the past

tate’s estimates and updating them, rather than going back over
he entire history of observations for each update. In other words,
iven the filtering result up to time t − 1, the agent needs to
ompute the posterior (filtering) distribution p(S | O ) for t using
t t

6

Fig. 3. State machine representation of the proposed Hidden Markov Model
(HMM) for loop-closure detection. Observations (Ot−1,Ot ) are based on the sys-
tem’s binomial response Pr(Xl(t) = xl(t)) among the database locations after the
voting process. The light green observation indicates the existence of locations
l which satisfy the binomial function’s conditions (∃ l ∈ L : Ot < th), while the
ight orange examples correspond to the ones that do not (∀ l ∈ L : Ot > th).
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

he new observation Ot . Let St = ⟨No Loop, Loop⟩ be the state vari-
ble representing the event that It closes a loop, while Ot is the

binomial response Pr(Xl(t) = xl(t)) between IQ and the database.
Following the Bayes’ rule and under the Markov assumption, the
posterior can be decomposed into:

p(St |Ot ) = η p(Ot |St )  
Observation

∑
St−1

p(St |St−1)  
Transition

p(St−1|Ot−1)

  
Belief

, (7)

where η is a normalization constant. The recursive estimation is
being composed by two parts: firstly, the current state distribu-
tion is projected forward (prediction) from t − 1 to t; then, it is
updated using the new evidence Ot .

4.3.1. Prediction
Between t − 1 and t , the posterior is updated according to the

robot’s motion through the transition model p(St |St−1), which is
used to predict the distribution of St given each state of St−1. The
combination of the above with the recursive part of the filter
p(St−1|Ot−1) comprises the belief of the next event. Depending
on the respective values of St and St−1, this probability is set
with one of the following values, which are further discussed in
Section 5.3:

• p(St = No Loop | St−1 = No Loop) = 0.975, the probability
that no loop-closure event occurs at time t is high, given
that no loop-closure occurred at time t − 1.

• p(St = Loop | St−1 = No Loop) = 0.025, the probability of a
loop-closure event at time t is low, given that no loop-
closure occurred at t − 1.

• p(St = No Loop | St−1 = Loop) = 0.025, the probability of
the event ‘‘No Loop’’ at time t is low, given that a loop-
closure occurred at time t − 1.

• p(St = Loop | St−1 = Loop) = 0.975, the probability that a
loop-closure event occurs at time t is high, given that a loop
also occurred at time t − 1.

4.3.2. Bayes update
The sensor model p(Ot |St ) is evaluated using the locations’
binomial probability score. Aiming to categorize the generated
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inomial scores into filter observations, the value range is split
nto two parts based on the probability threshold th:

(Ot |St = No Loop) =

{
1.00, if Ot > th, ∀l ∈ L.
0.00, if Ot < th, ∃l ∈ L.

(8)

p(Ot |St = Loop) =

{
0.46, if Ot > th, ∀l ∈ L.
0.54, if Ot < th, ∃l ∈ L.

(9)

As shown, our observation model seeks into the set of locations L
for the existence of database entries l which satisfy the binomial
conditions. Notably, the system’s initialization probabilities are
set to a no loop-closure belief p(S0) = ⟨1, 0⟩, which derives from
ur confidence that such detection cannot occur at the begin-
ing of any trajectory. The proposed model is summarized in
he diagram in Fig. 3, while a discussion regarding the selected
robability values is offered in Section 5.3.

.4. A new or an old location?

Posterior, in the probabilistic context, means ‘‘after taking into
ccount the relevant observation related to the examined cases’’.
fter p(St |Ot ) has been updated and normalized, the highest
ypothesis is accepted as full posterior, i.e., if the loop-closure hy-
othesis p(St = No Loop | Ot ) is higher than 50%, the system adds
new location to the database, otherwise a ‘‘Loop’’ is detected.

.5. Location matching

Since the votes’ distribution affects a group of consecutive
mages, the 10 most similar candidate loop-closing locations are
onsidered among the database entries that satisfy the condi-
ions in Section 4.2. In addition, when the perceived query cam-
ra measurement performs a loop in the trajectory, while none
f the database observation scores satisfy the aforementioned
onditions (Ot > th, ∀l ∈ L), a temporal consistency constraint
s adopted so as to determine the candidates images. In order
o cope with possible false positive detections, owed to poten-
ial perceptual aliasing in the environment (e.g., when different
laces contain similar visual cues), the selected camera frames
re subjected to a geometrical check. In such a way, image pairs
hat cannot be correlated by a transformation matrix are rejected
ndependently from their visual similarity. An image-to-image
orrelation is performed between the query IQ and the accepted
andidates. Computations are executed until a valid matrix is
stimated through an ascending binomial score order.

.5.1. Temporal consistency
Let us consider that at time t−1, the system correctly indicates
previously visited location by matching pair ⟨IQ−1, IM−1⟩ and

hat at time t , the filter also indicates a loop; however, none of
he locations satisfy the binomial threshold (Ot > th, ∀l ∈ L). The
emporal constrain defines a group of images, which are the only
et of database entries to be further examined as loop-closures. In
his paper, we determine this window as of size 2κ + 1 centered
round IM −1, i.e., [I(M−1)−κ , . . . , I(M−1)+κ ]. Nevertheless, locations
hich are not assigned with a binomial score are excluded.

.5.2. Geometrical verification
A fundamental matrix is estimated, through a RANSAC-based

RANSAC stands for RANdom SAmple Consensus) scheme, which
s required to be supported by at least φ point inliers between the
uery IQ and the matched image IM . To compute these correspon-
ences, tracked features are compared with the descriptors from
he chosen location. It is also worth noting that during the above
eometrical verification, our original approach achieved reduced
omputational complexity by using only the database features
7

hat contributed to the formulation of tracked words. Neverthe-
ess, this characteristic also leads to fewer feature associations
mpairing the computation of a valid fundamental matrix and, in
urn, to the rejection of valid loop-closing image pairs. To cope
ith such cases, we extract a set of SURF descriptors the cardi-
ality of which is twice as big as the ones of each frame’s TP, thus,
ffering an efficient balance between accuracy and computational
omplexity. It is worth mentioning that the key-point matches
nd the estimated fundamental matrix for a valid loop-closure
vent can be provided to a SLAM architecture, to be used within a
undle adjustment framework or for re-localization, without any
dditional cost.

.6. Visual vocabulary management

The goal of this process is to effectively handle the increasing
ate of the vocabulary, which, until this stage, adds new elements
o matter if a similar entry already exists. The objective is to
emove multiple codewords of repetitive pattern representing
he same environmental element at different time-stamps. On
op of the database size and computational complexity reduction,
his unmonitored development also results in a voting ambiguity.
his issue is mostly evident when the agent revisits a certain
oute more than twice, in which case the query image will dis-
ribute votes from the same physical location to multiple ones,
ecreasing the system’s discriminability.

Algorithm 1: Vocabulary management
Input: IQ : Incoming image, IM : Matched image, Idx:

Location indexing list, Wn: Newly generated tracked
word, dn: Newly generated tracked word’s
descriptors, RL: Reference list

Output: Idx: Updated location indexing list, BoTW : Visual
vocabulary

1 for each newly generated tracked word Wn do
2 id = find(max(RL, Wn)) // select the most voted word in

database based on the Wn descriptors’ polling history
3 dist = norm(Wn - Wid) // euclidean distance
4 member = Idx(id, IM ) // matched image contains most

voted word
5 if dist < 0.4 and member == true then
6 Wid = median(Wid, dn) // refresh the word’s

description
7 Idx = update(Idx) // refresh the location indexing list

based on the generated word’s map position
8 else
9 BoTW = add(Wn) // add newly generated word since

it does not exists in dictionary
10 end
11 end

Thus, during navigation, we create a reference list based on
the matching process, which indicates tracked words being voted
by the query descriptors. When a loop-closure is detected, each
newly generated word is checked for a descriptors-to-word corre-
spondence, to determine if the new element needs to be further
processed or not. For each sequence of tracked descriptors, the
most voted word in the database is indicated. Then, a similarity
comparison based on Eq. (2) is applied on the chosen words’ pair
⟨newly generated, corresponding most voted⟩, in which tracked
words are considered to be similar if their distance is lower than
0.4. However, despite this check, the corresponding vocabulary’s
entry needs to satisfy a location condition check, meaning that
the selected word is ignored if it is not associated with the
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Fig. 4. The process of vocabulary management. As the trajectory escalates
..., It−3, It−2, It−1, It ) along with voting procedure, a reference list regarding
the tracked descriptors (block of crosses) and their nearest-neighboring tracked
words (block of squares) is maintained. When the query location It is identified
s a loop-closure, the most recently generated tracked words are checked with
he most reported ones indicated via the reference list, in order to decide if they
hould be accumulated into the existing vocabulary.

hosen loop-closing image. Subsequently, tracked descriptors of
he generated word and the one existing in the database are
erged according to Eq. (3). Finally, the vocabulary’s indexing list

dx, regarding the tracked word’s locations, is updated to include
he images corresponding to the merged word. A representative
xample is depicted in Fig. 4, while Algorithm 1 details this
rocess.

. Experimental evaluation

This section starts with an introduction of the experimen-
al methodology followed to evaluate the proposed framework.
hen, an extensive set of tests on several community datasets are
emonstrated.

.1. Methodology

To evaluate the BoTW-LCD performance, precision–recall met-
ics are utilized [18]. Precision is defined as the number of correct
oop-closing matches (true-positive detections) over the total
ethod’s identifications (true-positive plus false-positive detec-

ions), whereas recall is the ratio of true-positive loop-closure
etections to the total of ground truth loop-closures (sum of
rue-positive and false-negative). A correct match is considered
o be any identification that occurs within a small radius from
he query location, while any false-positive detection lies outside
his area. False-negative detections correspond to the locations
hat ought to have been recognized, but the method failed to.
his ground truth information is shaped in the form of a matrix
hose rows and columns represent images with different time

ndices, while its boolean elements are set to 1 in the case that
loop-closure exists and 0 otherwise. A loop-closure algorithm
ims to achieve the highest possible recall score for a flawless
recision (i.e., with no false-positives). The need to maximize the
ecall score highly depends on the SLAM method associated with
he loop-closure detection task and used during the autonomous
ission. If a metric SLAM with very accurate odometry is used,

hen the recall ratio can be low at 100% precision. However,
ithin the scope of this work, we assume the general case of a

ess accurate odometry, which makes it essential to achieve the
ighest possible recall metrics.
8

Table 1
BoTW-LCD parameters.
Parameter Value

SURF point response, Φ : 400.0
Maximum # of Tracked Points, ν : 150
Minimum points’ distance, α : 5
Minimum descriptors’ distance, β : 0.6
Minimum tracked word’s length, ρ : 5
Minimum RANSAC inliers, φ : 8
Temporal consistency, κ : 8

An entry-level system with an Intel Core i7-6700HQ (2.6 GHz)
processor and 8 GB RAM was used in all of the following experi-
ments, while BoTW-LCD was configured by using the parameters
summarized in Table 1. The parameters regarding the visual vo-
cabulary generation (e.g., points’ distance α, descriptors’ distance
β and tracked word’s length τ ) are set in accordance to the
valuation in [68] and remained the same over all datasets to
emonstrate the system’s adaptability. The rest of the proposed
arameters are extensively evaluated in Section 5.4. The perfor-
ance of the presented approach is compared against existing
tate-of-the-art methods which are based on an incrementally
enerated visual vocabulary, while for the sake of complete-
ess, we also compare the proposed framework against several
ell-known pre-trained ones.

.2. Community datasets

A total of nine publicly-available datasets were chosen to val-
date the proposed system. With a view to assess the parameter’s
ffect over the achieved performance, three of these datasets
ere selected as evaluation cases, containing mostly ground-level
iews from outdoor and dynamic urban areas. With a purpose to
ighlight the system’s adaptability and its capacity to generalize,
he identified parameters are then fixed and assessed on the
emaining six sets, treated as testing cases, which represent dif-
erent environments from the evaluation ones. Table 2 provides
brief description of each dataset used.

.2.1. Evaluation datasets
The KITTI vision suite collection [75] constitutes a widely-

nown benchmark environment in the robotics community as it
rovides a broad range of traversed routes, accurate odometry
ata, long-term operational conditions and high-resolution visual
nformation (with respect to both image-size and frame-rate). The
ncoming visual stream is obtained by means of a stereo camera
ystem, which is mounted on a forward-moving car. We consid-
red only the left camera stream from courses 00 and 05 since,
ompared to the rest, they provide substantial loop-closure exam-
les. The third evaluation dataset was selected from Lip6 Outdoor
Lip6O) [29]. The visual information is provided by a hand-held
amera encountering plenty of loop events in the traversed path.
n important characteristic of this set is the fact that the camera
isits some of the recorded locations more than twice, making it
deal for the assessment of the proposed vocabulary management
echanism. Also, due to the sensor’s low resolution and frame-

ate, this dataset constitutes one of the most challenging cases
mong our tests. Regarding the related loop-closure data, Lip6O
ontains its own ground truth information, as provided by the
uthors. About the KITTI courses, this information was manually
xtracted through the dataset’s odometry data by [79].
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able 2
roperties of the utilized datasets.
Dataset Environment characteristics Number of frames Traversed Image size & frequency Camera

distance orientation

[75] KITTI 00 Outdoor, urban, dynamic 4551 ≈ 12.5 km 1241 × 376, 10 Hz Frontal
[75] KITTI 02 Outdoor, urban, dynamic 4661 ≈ 13.0 km 1241 × 376, 10 Hz Frontal
[75] KITTI 05 Outdoor, urban, dynamic 2761 ≈ 7.5 km 1241 × 376, 10 Hz Frontal
[75] KITTI 06 Outdoor, urban, dynamic 1101 ≈ 3.0 km 1241 × 376, 10 Hz Frontal
[29] Lip 6 Outdoor Outdoor, urban, highly dynamic 1063 ≈ 1.5 km 240 × 192, 1 Hz Frontal
[76] EuRoC MH 05 Indoor, static 2273 ≈ 0.1 km 752 × 480, 20 Hz Frontal
[77] Malaga 6L Outdoor, static 3474 ≈ 1.2 km 1024 × 768, 7 Hz Frontal
[78] New College Outdoor, dynamic 2624 ≈ 2.2 km 512 × 384, 1 Hz Frontal
[16] City Centre Outdoor, urban, dynamic 1237 ≈ 1.9 km 1024 × 768, 7 Hz Lateral
5.2.2. Testing datasets
Since the proposed pipeline needs to be adaptable to a va-

iety of different environments, six datasets are selected with
iverse visual properties, which are widely used in visual SLAM
esearch and, in particular, in evaluating loop-closure detection.
he tested courses consist of three outdoor, urban environments,
n indoor industrial area recorded by an aerial vehicle, an outdoor
niversity campus parking lot registered from a ground-moving
ehicle and a college’s campus park which was recorded via a
heeled robot. Among the above, the KITTI sequences 02 and
6 are selected aiming to evaluate our vocabulary’s evolution
ize as they provide trajectories wherein loops are not frequently
resented. The EuRoC Machine Hall 05 (EuRoC MH 05) part of the
uRoC Micro Aerial Vehicle (MAV) dataset [76] is also utilized,
s it provides rapid velocity variations along the trajectory and
ultiple examples of loop-closure events with slight fluctuations

n illumination. Visual respective sensory information is provided
y cameras mounted on a MAV with a high acquisition frame-
ate. Malaga 2009 Parking 6L (Malaga 6L) [77], New College [78]
nd City Centre [16] have been registered by the vision system
f an electric buggy-typed vehicle and a robotic platform, respec-
ively. They refer to significantly different operational conditions
e.g., traveled distance, frame size, acquisition frequency, camera
rientation), as presented in Table 2. However, they both contain
significant amount of loop-closure examples. Note also that
ew College’s incoming visual data were resampled to 1 Hz, from
ts initial 20 Hz rate, due to the robot’s low velocity and high
amera frequency, simulating a more representative example of
odern robotic platforms. The incoming visual stream in the
forementioned datasets is provided through a stereo system, yet
nly the right monocular data are utilized here. The ground truth
nformation used in the experiments for EuRoC MH 05, Malaga 6L
nd New College are as in [68], City Centre contains its own.

.3. Parameter discussion

In this subsection, we briefly discuss the temporal param-
ters. In general, the performance of BoTW-LCD relies on the
ransition p(St |St−1) and observation p(Ot |St ) probabilities (see
Section 4.3). The framework in which we work is quite sim-
ple, including two states for the transition model and the ob-
servation. The transition probabilities follow the loop-closure
principle which indicates that a belief state would follow its
previous one. Thus, their values are appropriately attributed to
almost 98% in both cases (see Section 4.3.1). The observation
model is the one which plays the primary role in shaping the
final decision. Aiming to highlight the probabilities produced
by the binomial density function, we have chosen a high level
of confidence p(Ot |St = No Loop) = 0.00 when the loop-closure
hreshold is satisfied (Eq. (8)) since its efficiency in identify-
ng pre-visited locations has been well-established [35,45,60,68].
n the contrary, to avoid losing a possible detection in a se-
uence of loop events, due to the lack of satisfying the condition
9

if Ot > th, ∀l ∈ L, its probability is defined at 46% (Eq. (9)), allow-
ing the system to correct its belief in the following observations
while maintaining its high performance. These parameters are
estimated empirically while a level of confidence about their
values is attributed through the Hidden Markov Model (HMM)
estimation algorithm proposed by [80]. All our experiments were
performed under the same set of probability filtering values.

5.4. Performance evaluation

We illustrate the precision–recall rates for different cases of
maximum retained tracked features (ν = 100, 150, 200). In ad-
dition, we assess the tracked words’ merging approach (mean,
median) as well as the description method accuracy (SURF - 64D,
SURF - 128D) for the achieved performance.

5.4.1. A modest vocabulary loop-closure detection
By deactivating the temporal filter and the geometrical verifi-

cation check, the proposed visual vocabulary management tech-
nique is evaluated and its results are compared against our pre-
vious work [68] in Fig. 5 for each of the aforementioned cases.
Our first remark is that each of the produced curves presents
high recall rates on the evaluation datasets. As one can observe,
the system offers a very competent performance for 150 and 200
tracked features, approaching 95% recall in both KITTI courses,
while keeping perfect precision. We observe that the median
achieves similar performance to the mean-based. Furthermore,
the 128D version of SURF shows higher recall rates for a lower
number of tracked features, exhibiting its description accuracy
for both the mean and median merging methods. In Lip6O, which
is evidently the most challenging image-sequence due to its low
acquisition frame rate, visual resolution and rapid viewpoint vari-
ations, the recall extends to almost 90%, whilst maintaining high
precision scores. It is notable that the recall curves corresponding
to the proposed method, which incorporates vocabulary manage-
ment, performs better in this dataset. This is owed to the fact that
the specific image stream records the same route more than twice
and the voting ambiguity originated from the arbitrary generation
of new words is avoided.

In support thereof, we present a quantitative evaluation of the
generated words in Table 3. Since our management technique is
affected by the system’s performance to detect loop-closures, the
recorded number of words is obtained for the highest recall rate
at 100% precision. A words’ reduction of about 10% is observed
for each case (ν = 100, 150, 200) for both merging methods and
descriptors dimensions. In addition, more words are ignored as
the number of tracked features increases, indicating that a higher
number of elements are generated and remain in the database
affecting the system’s discrimination capabilities. Regarding the
mean and the median versions, the results show a similar output
with small fluctuations. Finally, although the description accuracy
for the 128D version of SURF offers a lower amount of tracked
words, we argue that this fact is not decisive for our approach
since its memory footprint would be double the size of the 64D
one.
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Fig. 5. Precision–recall curves evaluating the number of maximum tracked features ν against the previous approach [68] and the proposed one using the vocabulary
management technique. For each version, the tracked word generation method is presented along with the different descriptor version (64 & 128 dimension space
of Speeded-Up Robust Features (SURF) [9]). Experiments are performed on the KITTI sequences [75], 00 (top), 05 (middle) and Lip 6 Outdoor [29] (bottom). The
proposed system seems to offer higher discrimination at voting procedure permitting similar recall rates for 100% precision between the cases of 150 and 200. The
128D SURF descriptors exhibit their robustness when a lower amount of tracked features is used as depicted in every of the evaluated dataset for the case of 100
tracks.
Table 3
Total of generated tracked words for each evaluated dataset.
Dataset Tracked points Previous (64D) Proposed (64D) Previous (128D) Proposed (128D)

Description method Description method Description method Description method
Mean/Median Mean/Median Mean/Median Mean/median

[75] KITTI 00 100 25603/25603 22930/22898 23577/23577 21092/22160
[75] KITTI 00 150 38170/38170 34196/34170 34951/34951 31514/31722
[75] KITTI 00 200 50510/50510 45741/45731 45976/45976 41669/41989
[75] KITTI 05 100 14853/14853 13432/13431 13832/13832 12448/12508
[75] KITTI 05 150 22199/22199 20135/20100 20515/20515 18548/18642
[75] KITTI 05 200 29391/29391 26728/26659 27009/27009 24516/24687
[29] Lip 6 Outdoor 100 4206/4206 3717/3724 3145/3145 2748/2788
[29] Lip 6 Outdoor 150 5776/5776 5066/5085 4309/4309 3768/3803
[29] Lip 6 Outdoor 200 6956/6956 6138/6236 5145/5145 4499/4576
5.4.2. Bayesian filtering
We now present our evaluation of the Bayesian filtering ap-

roach which uses temporal context in Fig. 6. To exhibit the
ethod’s performance based on the binomial PDF and Bayes

ilter, we illustrate the precision–recall rates following the same
ethodology for different loop-closure threshold th values. The
xperiments have been performed on the same evaluation
10
datasets using the median approach for generating tracked words,
while the geometrical verification was not activated. As we grad-
ually evaluate individual frames, the posterior probability for
non-loop and all possible loop-closure events at each query
location is evaluated based on the loop hypothesis in Section 4.4.
Table 1 presents the parameters selected in order to achieve a re-
duced computational complexity, while still preserving increased
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Fig. 6. Evaluating the proposed system’s performance though the utilization of the Bayes filter. Using the median approach during the generation of tracked words,
recision and recall curves are illustrated for different speeded-up robust features’ dimensions (64 & 128) [9] and maximum number of tracked features ν. High
ecall rates are obtained for each evaluated image stream. This is owed to the exploitation of the visited locations’ temporal consistency along the navigation route
n combination with the binomial probabilistic scoring.
Fig. 7. Execution time per image of the KITTI [75] sequences 00, 05 and Lip 6
Outdoor [29] for each of the main processing stages of the proposed algorithm.

recall rates. Concerning the overall performance, we observe that
an improved score is achieved by the BoTW-LCD in every image-
sequence, reaching high recall rates at 100% precision. However, it
11
Table 4
Processing time per image (ms/query) for the KITTI 00, 05 and Lip 6 Outdoor
datasets.

Average time

KITTI Lip 6

00 05 Outdoor

Feature Point detection 41.4 45.5 7.6
extraction Point description 21.0 23.0 7.4

Vocabulary Kanade–Lucas–Tomasi 8.9 6.4 5.6
generation Guided feature selection 2.0 2.0 1.1

Merging words 2.9 2.6 1.5

Probabilistic Database search 46.4 23.4 9.6
navigation Binomial scoring 0.8 0.8 1.0

Loop-closure Geometrical verification 1.3 1.0 2.7
detection Vocabulary management 1.5 0.6 2.2

Whole pipeline 126.2 105.3 38.7

is notable that in Lip6O, an improvement in performance permits
the system to reach a score of about 85% when 150 tracks are
employed. When the binomial score does not satisfy condition
(5), temporal consistency prevents the system from detecting
false-positive events in a different, though similar, area than the
one where the previous loop-closure occurs. This way, a higher
recall score is attained for both descriptor versions, allowing
us to avoid the 128D method since it is computation-wise and
memory-wise demanding.

5.5. System’s complexity

Our method’s average timing results per image are shown in
Fig. 7. To measure the execution time, we ran our framework
on each of the evaluation datasets. Among them, the KITTI 00
set is the longest ones exhibiting a remarkable amount of loop-
closure events. For this group of experiments, a total of 4551
images are processed, yielding 126.2 ms per query image on
average. Table 4 shows an extensive timing documentation for
each stage. The features extraction process involves the compu-
tation of SURF key-points detection and description, while the
vocabulary generation is split into three steps: the points’ tracking
though the KLT method, the guided feature selection and the
words’ merging. The probabilistic navigation includes both the
exhaustive database search and the binomial probabilistic score
computations. Lastly, Loop-closure detection denotes the time re-
quired for the verification step through the calculation of the
corresponding fundamental matrices and the words’ update due

to the vocabulary management.
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omparison with our previous approach.
Dataset Tsintotas et al. [68] BoTW-LCD

SURF R (%) T (ms) SURF R (%) T (ms)

[75] KITTI 00 51K 97.5 173.5 34K 97.7 126.2
[75] KITTI 02 52K 80.0 190.2 37K 81.5 133.0
[75] KITTI 05 29K 92.6 130.1 20K 94.0 105.3
[75] KITTI 06 12K 98.1 98.7 8K 98.1 90.1
[29] Lip 6 Outdoor 7K 50.0 37.1 5K 78.0 38.7
[76] EuRoC MH 05 20K 83.7 90.8 13K 85.0 82.6
[77] Malaga 6L 41K 85.0 171.8 28K 85.2 146.7
[78] New College 18K 83.0 82.1 10K 87.0 67.5
[16] City Centre 3K 20.0 65.0 2K 36.0 68.4

The results in Table 4 show that we can reliably detect loops in
atasets that expand for 11 km while maintaining low execution
imes. We observe that all the involved steps are notably fast,
onsidering the fact that we utilize a floating-point descriptor
hrough the SURF algorithm. BoTW-LCD is able to rapidly process
mages using a reduced set of visual words due to its innovative
isual word management process. In contrast to the binomial
coring, the database search stage exhibits the highest execution
time, due to the lack of an indexing scheme, followed by the
feature extraction stage, which is known as the bottleneck point
for many loop-closure approaches. The execution time for vocab-
ulary generation is highly depended on the number of points and
the tracker’s parameters (e.g., pyramid levels, neighborhood area,
maximum bidirectional error), while the required time for the
guided feature selection and the words’ merging is low. The loop-
closure detection stage is also negligible. As shown in Fig. 7, the
proposed system achieves to estimate a valid fundamental matrix
very fast reaching a value of 3 computations, on average, between
the query IQ and the accepted candidates.

5.6. Comparative results

This section compares BoW-LCD against other state-of-the-art
solutions. In this regard, Table 5 contains the final mapping size
(BoTW), the maximum recall at 100% of precision (R) and the
average response time per image (T) obtained for each approach
and dataset. The performance of our system was measured by
using a generic loop-closure threshold of th = 2−9, which was
obtained by the precision–recall curves in Fig. 6. This value was
selected since it allows the system to achieve high recall rates in
every evaluation dataset. During this experiment, our geometrical
verification and vocabulary management modules were active,
while the parameters remained constant so as to evaluate the
adaptability of the approach. As can be observed, the impact
in terms of recall is minimum and, in general, quite similar.
However, BoTW-LCD is able to process an image in lessen time
using a reduced set of visual words. We argue that this fact
is mainly due to the new visual word managing process. Note
that a comparison with off-line BoW schemes regarding their
respective complexities is not presented since a direct analogy
with methods based on a pre-trained vocabulary would not be
meaningful. Following the results presented in Table 5, Fig. 8 il-
lustrates the detections provided by BoTW-LCD at 100% precision
for each image-sequence. The top path of each dataset presents
the corresponding ground truth, i.e., the trajectory which should
be recognized in case the framework detects every loop-closure.
When a loop is detected, the image triggering this event is labeled
by a blue cycle. Note that in most cases, the loops are successfully
detected, especially in the sequences of KITTI dataset.

Subsequently, since a source code regarding the approach of

Gehrig et al. [60] is not publicly available, we implemented a /
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Table 6
Comparison with the baseline approach.
Dataset Gehrig et al. [60] BoTW-LCD

SURF R (%) T (ms) SURF R (%) T (ms)

[75] KITTI 00 681K 92,8 920.3 34K 97.7 126.2
[75] KITTI 02 699K 80,2 990.7 37K 81.5 133.0
[75] KITTI 05 414K 86,0 572.8 20K 94.0 105.3
[75] KITTI 06 165K 98,5 185.9 8K 98.1 90.1
[29] Lip 6 Outdoor 159K 85,5 232.9 5K 78.0 38.7
[76] EuRoC MH 05 340K 53,8 310.4 13K 85.0 82.6
[77] Malaga 6L 520K 64,0 770.0 28K 85.2 146.7
[78] New College 394K 84.7 672.6 10K 87.0 67.5
[16] City Centre 183K 74,0 232.7 2K 36.0 68.4

Table 7
Comparison with a state-of-the-art approach.
Dataset iBoW-LCD [36] BoTW-LCD

ORB R (%) T (ms) SURF R (%) T (ms)

[75] KITTI 00 958K 76,5 400.2 34K 97.7 126.2
[75] KITTI 02 950K 72,2 422.3 37K 81.5 133.0
[75] KITTI 05 556K 53,0 366.5 20K 94.0 105.3
[75] KITTI 06 212K 95,5 385.1 8K 98.1 90.1
[29] Lip 6 Outdoor 121K 85,2 228.0 5k 78.0 38.7
[76] EuRoC MH 05 443K 25,6 350.4 13K 85.0 82.6
[77] Malaga 6L 806K 57,4 440.8 28K 85.2 146.7
[78] New College 254K 73.1 383.7 10K 87.0 67.5
[16] City Centre 67K 88,2 336.2 2K 36.0 68.4

SURF-based2 version aiming to offer a more thorough view about
the impact of our mapping technique, as apposed in Table 6. This
version utilizes the same amount of SURF elements as the Tracked
Points ν used by the proposed method to describe the incoming
frame. Furthermore, a 40 s temporal window is included for
rejecting early visited locations [35]. Similarly, for searching the
database and aggregating votes, k = 1 nearest-neighbor was
selected, while the parameterization of the geometrical check
between the chosen pair was also based on our presented work.
The best-performing loop-closure threshold for each assessed
case was evaluated according to the literature and the selected
parameters remained constant over all datasets. In addition, in
Table 7 we compare the proposed pipeline with the state-of-the-
art framework iBoW-LCD [36], which uses binary codewords for
generating the vocabulary. Its evaluation come from the open
source implementation.3 Notice the high reduction of the final
mapping size (BoTW against SURF and ORB) and the timings
offered by the proposed approach in comparison to the ones in
the implemented methods of [36,60]. Nevertheless, as shown in
both Tables 6 and 7, building a map through tracked words does
not always imply higher recall values. However, it consistently
reduces the computational times and the size of the final map. It
is worth to mention that both in Lip6O and City Centre, which are
two challenging image-sequences (e.g., due to the cameras’ ori-
entation), the other approaches perform better since are tend to
work as image-retrieval methods having a distinct representation
for each incoming frame. Moreover, with the aim to enrich the
comparative analysis, Table 8 presents the memory consumption
in each trajectory mapping for some of the most acknowledged
methods that aim for a real-time and lightweight implemen-
tation. As shown, BoTW-LCD achieves the lowest footprint in
every dataset. Note that the low memory usage of the iBoW-LCD
vocabulary is mainly due to its binary form. Similarly, PREVIeW,

2 The implementation of Gehrig et al. [60] SURF-based pipeline can found at:
ttps://github.com/ktsintotas/probabilistic_voting.
3 The iBoW-LCD [36] open-source implementation can be found at https:

/github.com/emiliofidalgo/ibow-lcd.

https://github.com/ktsintotas/probabilistic_voting
https://github.com/emiliofidalgo/ibow-lcd
https://github.com/emiliofidalgo/ibow-lcd
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Fig. 8. Loop-closures generated from the proposed pipeline for every evaluated dataset using the parameters defined in Table 1. In each trajectory, red cycles indicate
ground truth information, while the blue ones illustrate the system’s detections. The top row presents the KITTI data [75] sequences 00, 02, 05 and 06, whilst EuRoC
MH 05 [76], Malaga 6L [77], New College [78] and City Centre [16] are depicted in the bottom row. As can be seen in most of the cases, BoTW-LCD achieves to
recognize locations when the robot traverses a route which presents similar visual content. This is especially highlighted in the KITTI datasets, where the frames are
captured from a forward facing camera, in contract to City Centre’s lateral sensor orientation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
c

which uses a binary dictionary of 1M visual words, utilizes only
30.5 Mb of memory.

Furthermore, in Table 9 our approach is compared against the
ost representative works in visual place recognition using on-

ine learning techniques based on both local and global descrip-
ors, namely Angeli et al. [29], Miford and Wyeth (seqSLAM) [56],
han and Wollherr (IBuILD) [33], Zhang et al. [34], Tsintotas
t al.4 [35], Kazmi and Mertsching [61], An et al. (FILD) [63] and
sintotas et al.5 [81]. In addition, for the sake of completeness,
omparisons are also presented against approaches based on a
re-trained vocabulary with the aim to help the reader to identify
he place of the proposed pipeline within the state-of-the-art.

4 The implementation of Tsintotas et al. [35] can be found at https://github.
om/ktsintotas/assigning-visual-words-to-places.
5 The implementation of Tsintotas et al. [81] can be found at https://github.

om/ktsintotas/tracking-DOSeqSLAM.
 A

13
More specifically, Cummins and Newman (FAB-MAP 2.0) [18],
Gálvez-López and Tardós (DBoW2) [19], Mur-Artal and Tardós
(DBoW2-ORB) [20], Bampis et al. (PREVIeW) [23] and Yue et al.
are chosen. The maximum recall scores achieved at 100% preci-
sion for each approach are based on the figures reported in the
original papers for image-sequences with the ground truth pro-
vided by the respective authors. The term N/A indicates that the
corresponding information is not available from any cited source,
while the dash (–) designates that the approach fails to reach
a recall score for perfect precision. Regarding PREVIeW6 and
FILD,7 evaluation occurred based on the open source implemen-
tations, with the default parameter configurations provided in the

6 The PREVIeW open-source implementation can be found at https://github.
om/loukbabi/PREVIeW.
7 The FILD open-source implementation can be found at https://github.com/
nshanTJU/FILD.

https://github.com/ktsintotas/assigning-visual-words-to-places
https://github.com/ktsintotas/assigning-visual-words-to-places
https://github.com/ktsintotas/tracking-DOSeqSLAM
https://github.com/ktsintotas/tracking-DOSeqSLAM
https://github.com/loukbabi/PREVIeW
https://github.com/loukbabi/PREVIeW
https://github.com/AnshanTJU/FILD
https://github.com/AnshanTJU/FILD
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Fig. 9. Example images which are correctly identified by the proposed framework as loop-closure detections. The query frame IQ is the image recorded by the robot
t time t , whereas the matched frame IM corresponds to the chosen location. From left to right: KITTI 02 [75], Lip 6 Outdoor [29], EuRoC MH 05 [76] and Malaga

6L parking [77].
respective codes. OpenSeqSLAM8 has been configured through
OpenSeqSLAM2.09 toolbox [82] except the sequence length of the
images (ds) which is, according to the author [83], the most crit-
ical parameter of the algorithm. Longer sequence lengths usually
perform better in terms of precision–recall, but in some datasets
such as KITTI, our experiments showed the opposite behavior.
Since we want to increase the performance of each approach,
this parameter was experimentally set to 20, that maximized the
recall in all environments. Furthermore, a 40 s temporal window,
similar to [35], was applied to reject early visited locations. The
best results at 100% of precision are chosen for each dataset. The
authors in [61] performed the presented evaluations based on our
ground truth information. In addition, for the case of FAB-MAP
2.0 [18] and DBoW2 [19], where no actual measurements are pro-
vided regarding the used datasets, the presented performance is
obtained from the setup described by [61] and [84], respectively.

By examining Table 5, one can observe the significantly high
score achieved by our method in the Lip6O dataset. We succeed
to excel among our preliminary work, highlighting the impor-
tance of the temporal information across the trajectory. Nonethe-
less, our framework performs unfavorably against iBoW-LCD and
Kazmi and Mertsching as shown in Table 9. This is due to the
geometrical verification parameterization which strengthens our
framework’s precision accuracy in the cost of missing some of its
potential performance, but also due to the fact that the system
encounters a route of low textured images (avg. features/image),
as shown in Table 2, impairing our feature tracking procedure.
This characteristic drops the recall rate when the geometrical
verification step is applied since some of the true-positive detec-
tions are discarded as they fail to produce a valid fundamental
matrix with enough inliers. However, we also need to stress out
that our method’s performance is able to reach even higher recall
rate than the ones in Table 9 (as illustrated in the precision–
recall curves in Fig. 6), yet our aim is to present a system with a
homogeneous set of parameters that can be used in any environ-
ment. Thus, the adopted probability threshold and the RANSAC
inliers are selected and fixed so as to maintain high scores for
100% precision across every evaluated dataset. In the KITTI 00
set, the proposed framework exhibits over 97% of recall results,
while compared to the rest of the sequences of the KITTI suite,
it outperforms most of the competitors. Moreover, in the testing
cases, our framework demonstrates a significant improvement
to the obtained recall. In EuRoC MH 05, Malaga 6L, and New

8 The OpenSeqSLAM open-source implementation can be found at http:
/openslam.org/openseqslam.html.
9 The OpenSeqSLAM2.0 open-source implementation can be found at https:

/github.com/kadn/OpenSeqSLAM2.0.
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College a score of 85% is reached on each dataset, while holding
a high precision rate. It is noteworthy that in EuRoC, where the
system confronts an environment of low illumination, the binary
description methods, adopted in PREVIeW and iBoW-LCD, are
unable to perform competitively compared to the floating point
features. Similarly, global descriptors utilized in [56,63] and [81]
present low recall scores. This results in a high divergence in
terms of recall scores against the proposed pipeline. Finally, in the
case of City Centre, our system fails to follow the performance
of the other solutions. This fact implies that our mapping pro-
cedure performs better when the camera’s orientation is frontal,
allowing the formulation of prolonged word tracks. In Fig. 9, some
accurately detected locations are shown.

6. Discussion and future work

In this article, an improved loop-closure detection approach is
presented under the BoTW-LCD framework. The proposed solu-
tion comprises a completely incremental and on-line appearance-
based loop-closure detection architecture, which allows the tra-
jectory to be mapped by a significantly lower number of words
extracted from tracked features. The method does not require any
training process regarding its visual vocabulary leading to a set of
words which are fully adapted to each individual environment.
We have maintained the system’s complexity as low as possible,
avoiding redundant accumulation of new points as long as a fea-
ture’s tracking holds. This essentially leads to the generation of a
representative vocabulary which is significantly shorter than any
other cited work. Thus our method achieves to incrementally map
the environment in real-time (up to 20 frames-per-second) and
has a lower run-time memory footprint during deployment. It is
noteworthy that less than 37K visual words are totally produced
for a route of 13 km using 8.3 Mb of memory. The proposed
pipeline can achieve high recall scores for perfect precision in all
tested datasets outperforming existing state-of-the-art methods
while maintaining low execution times.

By applying a probabilistic voting scheme when searching for
pre-visited locations into the map, a high degree of confidence
about the images’ similarity is achieved. Furthermore, a Bayes
filter exploits the temporal aspect of the data gathered along the
traversed path and finally, a geometrical verification step is per-
formed to reject possible remaining outliers. Using a vocabulary
management technique, tracked words are further merged when
a pre-visited location is detected reducing the computational
time and the vocabulary’s size while improving the system’s
accuracy. Though our extensive experimentation, we showed that
64D SURF descriptors are able to outperform the 128D ones
achieving higher accuracy and lower memory consumption. As

http://openslam.org/openseqslam.html
http://openslam.org/openseqslam.html
https://github.com/kadn/OpenSeqSLAM2.0
https://github.com/kadn/OpenSeqSLAM2.0
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emory usage for different state-of-the-art systems. Bold values indicate minimum consumption per evaluated dataset.
Method KITTI Lip 6 EuRoC Malaga New city

00 02 05 06 Outdoor MH 05 6L College Centre

(Mb) (Mb) (Mb) (Mb) (Mb) (Mb) (Mb) (Mb) (Mb)

[68] Tsintotas et al. 12.4 12.6 7.0 2.9 1.7 4.8 10.0 4.3 0.7
[60] Gehrig et al. 166.2 170.6 101.0 40.2 38.8 83.0 126.9 96.1 44.6
[36] Garcia-Fildago and Ortiz (iBoW-LCD) 29.2 28.9 16.9 6.4 3.6 13.5 24.5 7.7 2.8
[23] Bampis et al. (PREVIeW) 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5

BoTW-LCD 8.3 9.0 4.8 1.9 1.2 3.1 6.8 2.4 0.5
Table 9
Comparison of maximum recall at 100% precision. Bold values indicate maximum performance per evaluated dataset.

KITTI Lip 6 EuRoC Malaga New City

00 02 05 06 Outdoor MH 05 6L College Centre

Off-line approaches

[18] Cummins and Newman (FAB-MAP2.0) 61.2 44.3 48.5 64.5 N/A N/A 21.8 52.6 40.1
[19] Gálvez-López and Tardós (DBoW2) 72.4 68.2 51.9 89.7 N/A N/A 74.7 47.5 30.6
[20] Mur-Artal and Tardós (DBoW2-ORB) N/A N/A N/A N/A N/A N/A 81.5 N/A 43.3
[23] Bampis et al. (PREVIeW) 96.5 72.0 97.3 80.1 58.3 23.1 33.9 80.8 71.1
[85] Yue et al. 97.4 N/A 93.0 98.0 N/A N/A N/A N/A 90.5
On-line approaches

[29] Angeli et al. N/A N/A N/A N/A 71.0 N/A N/A N/A N/A
[56] Milford and Wyeth (SeqSLAM) 74.8 63.8 52.1 95.6 26.0 12.1 20.5 41.7 85.0
[33] Khan and Wollherr (IBuILD) 92.0 N/A N/A N/A 25.6 N/A 78.1 N/A 38.9
[34] Zhang et al. N/A N/A N/A N/A N/A N/A 82.6 N/A 41.1
[35] Tsintotas et al. 93.1 76.0 94.2 86.0 12.0 69.2 87.9 88.0 16.3
[61] Kazmi and Mertsching 90.3 79.4 81.4 97.3 84.9 26.8 50.9 51.0 75.5
[63] An et al. (FILD) 91.2 65.1 85.1 93.3 0.3 – 56.0 76.7 66.4
[81] Tsintotas et al. (Tracking-DOSeqSLAM) 77.6 61.1 38.2 – 40.9 – 42.0 40.0 47.1

BoTW-LCD 97.7 81.5 94.3 98.1 78.0 85.0 87.9 89.2 36.0
shown in Table 9, the recall rates are particularly high in most
of the assessed image-sequences. Regarding the case of Lip6O,
wherein the camera traverses the same trajectory three times, the
accuracy was increased by over 20% in contrast to our previous
work. Compared to the state-of-the-art, our algorithm achieved
high performance and real-time behavior on routes as large as
13 km.
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