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Abstract

In recent years, the robotics community has extensively examined methods con-

cerning the place recognition task within the scope of simultaneous localization and

mapping applications. This article proposes an appearance‐based loop closure de-

tection pipeline named “Fast and Incremental Loop closure Detection (FILD++). First,

the system is fed by consecutive images and, via passing them twice through a single

convolutional neural network, global and local deep features are extracted. Subse-

quently, a hierarchical navigable small‐world graph incrementally constructs a visual

database representing the robot's traversed path based on the computed global

features. Finally, a query image, grabbed each time step, is set to retrieve similar

locations on the traversed route. An image‐to‐image pairing follows, which exploits

local features to evaluate the spatial information. Thus, in the proposed article, we

propose a single network for global and local feature extraction in contrast to our

previous work (FILD), while an exhaustive search for the verification process is

adopted over the generated deep local features avoiding the utilization of hash

codes. Exhaustive experiments on eleven publicly available data sets exhibit the

system's high performance (achieving the highest recall score on eight of them) and

low execution times (22.05ms on average in New College, which is the largest one

containing 52,480 images) compared to other state‐of‐the‐art approaches.

K E YWORD S
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1 | INTRODUCTION

Autonomous robots have to explore unknown areas while retaining

the capability to construct a reliable map of the environment (Garcia‐

Fidalgo & Ortiz, 2015; Kostavelis & Gasteratos, 2015). This process is

widely known as simultaneous localization and mapping (SLAM) and

constitutes an essential component for any modern robotic system

(Cadena et al., 2016).

Besides, place recognition—the ability to match a scene with a

different one located about the same spot—is necessary to generate a

valid map (Lowry et al., 2016). In recent years, the mobile robot

platforms' increased computational power allowed cameras to be

established as the primary sensor to perceive the appearance of a

scene (Cummins & Newman, 2008, 2011; Engel et al., 2015;

Tsintotas et al., 2019). However, the noisy sensor measurements,

modeling inaccuracies, and errors due to field abnormalities affect the

performance of SLAM. Identifying known locations in the traversed

route based on camera information to rectify the incremental pose

drift is widely known as visual loop closure detection (Botterill

et al., 2011; Han et al., 2021; Mei et al., 2010; Tsintotas, Bampis, &
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Gasteratos, 2018; Zhang, 2011). This operation is highly related to

image retrieval, as the system tries to find the most similar visual

entry within a visual database, which is explicitly built using camera

measurements gathered along a trajectory. There are two main

stages in this process, namely filtering and re‐ranking (Teichmann

et al., 2019). Regarding filtering, the database elements are sorted

according to their similarity to the query image, that is, the current

robot's view. Then, during re‐ranking, each candidate image‐pair

generated from the filtering is verified based on its spatial corre-

spondences (Radenovic et al., 2018).

Early studies in image retrieval used global description vectors, such

as color or texture, to represent the visual data (Konstantinidis

et al., 2005; Oliva & Torralba, 2001, 2006; Torralba et al., 2003). The

subsequent pipelines utilized the shape and local information extracted

through point‐of‐interest detection and description methods to find the

most similar candidates (Amanatiadis et al., 2011; Bay et al., 2006;

Calonder et al., 2010; Lowe, 2004; Rublee et al., 2011). These approaches

provided robust detection against rotation and scale changes. However,

the increased time needed to extract and match local features constitutes

a significant bottleneck, particularly in highly textured environments

(Tsintotas et al., 2019). Therefore, researchers adopt more sophisticated

solutions to overcome this drawback, such as quantizing the descriptor

space, producing more compact representations, and faster indexing.

The so‐called Bag‐of‐Words (BoW) model (Sivic & Zisserman, 2003),

usually constructed through k‐means clustering (MacQueen, 1967), em-

ploys the widely utilized term‐frequency inverse‐document‐frequency

(TF‐IDF) technique to generate visual words histograms that represent

the camera data. In many BoW‐based place recognition approaches, the

proper image‐pair is retrieved via histogram comparisons (Bampis

et al., 2016, 2018; Gálvez‐López & Tardós, 2012; Mur‐Artal & Tar-

dós, 2014; Tsintotas, Bampis, Rallis, et al., 2018). Such methods exhibit

high accuracy and low execution times, which are achieved due to the

utilization of indexing techniques, for example, the hierarchical k‐means

tree (Nicosevici & Garcia, 2012), k‐d tree (Liu & Zhang, 2012), and k‐NN

graph (Hajebi & Zhang, 2014). Nevertheless, their functionality is highly

dependent on the training environment wherein the visual data are ex-

tracted and, in turn, on the produced vocabulary. Some visual loop clo-

sure detection frameworks incorporate mechanisms to map the

environment through an incrementally generated visual vocabulary to

cope with such dependencies (Angeli et al., 2008; Filliat, 2007; Khan &

Wollherr, 2015; Labbe & Michaud, 2013; Tsintotas et al., 2018). How-

ever, due to their database construction, these pipelines mainly adopt

voting techniques to indicate the most similar location within the tra-

versed route.

Compared to hand‐crafted, the features extracted from specific

layers of convolutional neural networks (CNNs) show high discrimination

power (An et al., 2019; Babenko et al., 2014; Gordo et al., 2016; Hou

et al., 2015; Sünderhauf et al., 2015). Thus, CNN‐extracted elements

became a popular choice for many image classification (Krizhevsky

et al., 2012) and scene recognition (Zhou et al., 2014) applications.

Afterward, the proper image is selected through comparison techniques

similar to BoW schemes. However, the spatial information embedded in

image frames, which is crucial for data association between image‐pairs

for SLAM, is missing in the location's global representation. Hence,

methods for extracting local features have been developed. DEep Local

Feature (DELF), one of the original methods proposed for local

CNN‐based feature extraction, selects key‐points based on an attention

mechanism (Noh et al., 2017). Subsequently, the description stage is

achieved using dense, localized features. Finally, principal component

analysis (PCA) whitening reduces the descriptor space and improves the

retrieval accuracy (Jégou & Chum, 2012).

In our previous work (An et al., 2019), CNN‐based global features

extracted by MobileNetV2 (Sandler et al., 2018) were fed into a

Hierarchical Navigable Small World (HNSW) graph (Malkov &

Yashunin, 2018) to map the environment via an incrementally gen-

erated visual database. In addition, the graph allowed for short in-

dexing times when searching for Nearest Neighbors (NN). Then, local

features, extracted via speeded up robust features (SURF) (Bay

et al., 2006), were converted to binary codes to achieve real‐time

geometrical verification between the chosen image‐pair. In this study,

a similar scheme for mapping the robot's traversed path has been

adopted. Besides, we utilize two forward passes through a single

network for global and local features extraction. The main ad-

vantages offered by this strategy are: (i) the highly reduced execution

time for feature extraction and (ii) a significant accuracy improvement

due to CNN‐based features' better representation. Furthermore, in

this article, we introduce a re‐ranking optimization, which is based on

local features' low dimensional space (40 bins). Due to this fact, an

exhaustive search is employed, unlike our previous work where hash

codes were employed (Cheng et al., 2014), to improve the verification

process. Finally, the proposed framework is more compact, simpler,

and much faster than FILD (An et al., 2019). The presented algorithm

is evaluated experimentally against a total of eleven benchmark data

sets. As a final note, the source code1 of our Fast and Incremental

Loop closure Detection (FILD) pipeline, dubbed as “FILD++,” is made

publicly available to facilitate future studies.

The remainder of the paper is organized as follows: In Section 2,

a literature review of the most prominent works on visual loop clo-

sure detection is given. Section 3 describes our deep features, and

Section 4 introduces our HNSW visual database. In Section 5, the

proposed detection pipeline is detailed, while the experimental pro-

tocol and the outcoming comparative results follow in Sections 6

and 7, respectively. Finally, Section 8 discusses the proposed ap-

proach, draws conclusions, and provides our plans.

2 | RELATED WORK

This section presents a literature review regarding the approaches

which tackle the task of appearance‐based loop closure detection.

Depending on their visual feature extraction techniques, these pi-

pelines are distinguished into two categories: hand‐crafted features

and CNN‐based features.

1https://github.com/AnshanTJU/FILD
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2.1 | Approaches using hand‐crafted features

Since many researchers quantize the extracted features to generate a

visual vocabulary and cope with the large amount of features, off‐line and

incremental approaches are presented according to the process they

follow to construct their database. Fast appearance‐based MAPping

(FAB‐MAP) is considered to be the most popular off‐line approach

(Cummins & Newman, 2008, 2011). It uses a pretrained SURF dictionary

and a Chow Liu tree to learn its words' covisibility (Chow & Liu, 1968).

BoWSLAM allows robots to navigate in unknown environments by uti-

lizing the BoW feature matching with FAST corner detector and image

patch descriptor (Botterill et al., 2011). Gálvez‐López and Tardós (2012)

proposed a hierarchical BoW model, built with local binary features in

addition to direct and inverse indexes. Their method was improved by

employing ORB features (Rublee et al., 2011) to incorporate rotation and

scale invariance properties (Mur‐Artal & Tardós, 2014). Similarly, pre-

viously visited locations were detected inside a Parallel Tracking and

Mapping (PTAM) framework (Klein & Murray, 2007). Bampis et al.

(2016, 2018) combined the visual words' occurrences of sequence seg-

ments, that is, groups‐of‐images, to assist the matching process. Recently,

points and lines were combined based on information entropy to realize

accurate loop closure detection (Han et al., 2021).

While the approaches mentioned above relied on a static visual

vocabulary adapted to the training environment, in the work of Angeli

et al. (2008) an incrementally constructed vocabulary was proposed.

Loops were identified via the matching probability of a Bayesian scheme.

In a similar manner, an agglomerative clustering algorithm was adopted

for database generation (Nicosevici & Garcia, 2012). The stability be-

tween visual elements' associations was attained using an incremental

image‐indexing process in conjunction with a tree‐based feature‐labeling

method. Real‐Time Appearance‐Based Mapping (RTAB‐Map) proposed a

memory management mechanism to limit the number of candidate lo-

cations (Labbe &Michaud, 2013). An Incremental bag of BInary words for

Appearance‐based Loop closure Detection (IBuILD) was proposed by

Khan & Wollherr (2015). Visual words were generated via feature

matching on consecutive images, while a likelihood function decided

about the location pairing. Hierarchical Topological Mapping (HTMap)

proposed by Garcia‐Fidalgo and Ortiz (2017) relied on a loop closure

scheme based on the Pyramid Histogram of Oriented Gradients (PHOG)

(Bosch et al., 2007). Similar locations are highlighted due to binary local

features' correspondences. An incremental approach exerting binary de-

scriptors and dynamic islands was proposed in the work of Garcia‐Fidalgo

and Ortiz (2018), whileTsintotas et al. (2018) dynamically segmented the

incoming image stream to formulate places represented by unique visual

words. A probabilistic voting scheme followed, aiming to indicate the

proper place, while an image‐to‐image pairing was held based on the

locations' spatial correspondences. The same authors, proposed a map-

ping algorithm based on an incrementally generated visual vocabulary

constructed through local features tracking (Tsintotas et al., 2019). The

authors improved their method through the addition of a temporal filter

and a vocabulary management technique in Tsintotas et al. (2021). The

candidate locations were chosen through their probabilistic binomial

score (Gehrig et al., 2017). A modified growing self‐organizing network

was proposed by Kazmi and Mertsching (2019) for learning the topolo-

gical representation of global gist features (Oliva & Torralba, 2001).

2.2 | Approaches using CNNs features

The impressive performance of CNNs, exhibited on a wide variety of

tasks, has been the main reason for their becoming the principal solution

to many visual place recognition systems. Utilizing an end‐to‐end train-

able and generalized VLAD layer (Jégou et al., 2010), NetVLAD was

proposed for similar locations' identification (Arandjelovic et al., 2016). A

Spatial Pyramid‐Enhanced VLAD (SPE‐VLAD) layer was proposed by Yu

et al. (2020) to encode the feature extraction and improve the loss

function. PCANet (Chan et al., 2015) employed a cascaded deep network

to extract unsupervised features improving the loop closure detection

pipeline (Xia et al., 2016). Cascianelli et al. (2017) proposed a visual scene

modeling technique that preserved the geometric and semantic structure

and, at the same time, improved the appearance invariance. A multiscale

pooling exertion allowed for condition‐ and viewpoint‐invariant features

to be generated (Chen et al., 2017). Omnidirectional CNN was proposed

to mitigate the challenge of extreme camera pose variations (Wang

et al., 2018). In the work of Chen et al. (2018), the authors proposed an

attention mechanism capable of being incorporated into an existing

feed‐forward network architecture to learn image representations for

long‐term place recognition. A useful similarity measurement for detect-

ing revisited locations in changing environments was proposed by Xin

et al. (2019). The combination of a neural network inspired by the

Drosophila olfactory neural circuit with an 1D Continuous Attractor

Neural Network resulted into a compact system exhibiting high perfor-

mance (Chancán et al., 2020). Such works commonly used CNNs to ex-

tract the global descriptor of a scene, while few of them applied CNNs to

extract local information for appearance‐based loop closure detection.

3 | IMAGE REPRESENTATION

Our feature extraction module relies on a fully convolutional network

(FCN) to generate specific representations from the incoming image

frames. Aiming to achieve an enhanced image representation, the

proposed architecture is implemented upon a modified version of

DELF employing both global and local features in different scales

through a double‐pass process. We choose the initial three convolu-

tional blocks of ResNet50 (He et al., 2016) as the backbone of our

network, while the output of the last layer is fed into the feature

extraction module as depicted in Figure 1. Aiming for compact and

discriminative features, image‐level labeled information is used to train

the network.

3.1 | Incoming image frame

To extract representative and robust features, we use different scales to

extract the global and local features. Contrary to the original version of
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DELF, where image pyramids are constructed using seven different

scales, the proposed system employs only two of them; one for global

and the other for local features' extraction. According to the experiments,

the scales for extracting global and local features are set as 0.5 and 1.4.

Our method performs even better when specific scales for different data

sets are used. However, the forward processing on multiple scales re-

quires more times than a single scale. Due to this fact, the selected

parameters (see Section 7.2) provide a good trade‐off between accuracy

and timing, affording a system with low complexity and high

performance.

3.2 | The backbone network

Our backbone network comprises the first three convolutional blocks of

ResNet50. The initial block contains a 7 × 7 convolution layer followed

by a Batch Normalization (BN), a Rectified Linear Unit (ReLU), and a3 × 3

max‐pooling layer with stride 2. The second convolutional block includes

three residual blocks each of which comprises three layers: 1 × 1, 3 × 3,

and1 × 1, respectively. The1 × 1 convolution layers are used to reduce/

increase the feature map's channels, while a BN and a ReLU follow each

layer. The final convolutional block comprises four residual blocks, which

are similar to the previous block but are considered for the feature map's

dual channels.

3.3 | Global features

A global average pooling (GAP) layer (Lin et al., 2013) is applied to the

output feature map w h c× × of the backbone network to produce a

single description vector for the incoming visual data. Here, w , h, c

are feature map's width, height, and channels, respectively. As a re-

sult, the feature map's dimensionality is reduced to c1 × 1 × since

GAP generates a single number per channel, which is the average of

all w h× values. GAP's output forms the employed global feature.

3.4 | Local features

3.4.1 | Attention‐based local features

Each pixel in the backbone network's output is considered as a local

grid; the feature map is the dense sample of this grid. The tensor

composed of all grid channels is treated as a local feature, while the

corresponding keypoint is located at the center of the receptive field

in the pixel coordinates.

Since not all the densely extracted elements are appropriate

for the intended recognition task, an attention module consisting

of two 1 × 1 convolutional layers is applied to select a subset of

them. This module aims to learn a score function for each local

feature and creates the corresponding score map of size

w h× × 1. A softplus activation (Dugas et al., 2001) is deployed in

the second layer to ensure the score is nonnegative. Then, the

elements which present a value higher than a score threshold are

selected. It is noted that in this case, the local features are

first computed and then selected. This process differs from the

hand‐crafted techniques wherein the keypoints are firstly de-

tected, and then their description vectors are generated.

The score map learning process is the same as the original version.

The features to be learned by the attention model are denoted as

∈f n N, = 1, …,n
d , with d is the feature dimension. The score function

for each feature is α f θ( ; )n , with θ denoted the paramter of function ⋅α ( ).

The network generates the output logit y by a weighted sum of the

feature vectors:

⋅∑α f θ fWy = ( ; ) ,
n

n n







 (1)

∈W M d× is the weight of the final fully connected layer of the

network. M is the number of classes to be predicted.

The cross‐entropy loss is used for the training, which is

defined as:

F IGURE 1 The modified version of DEep Local Feature (DELF) (Noh et al., 2017) architecture for feature extraction. We extract the incoming visual
stream's global and local representations via two passes of the proposed fully convolutional network. Three components constitute its structure, namely:
the backbone, the global feature extraction branch, and the local feature extraction branch. The first component is based on the residual blocks of
ResNet50 (He et al., 2016). Simultaneously, for the global and local branches, an average pooling technique, an attention module, and a dimension
reduction method are used. The attention module is adopted for the corresponding scores' generation. This way, the most relevant features are assigned
with higher scores before their dimensionality reduction. More specifically, the first‐scale features are fed to the global branch, while the features from
the second are sent to the local branch [Color figure can be viewed at wileyonlinelibrary.com]
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⋅
1

= −y* log
exp( y)

exp( y)
.

T







 (2)

Here y* denotes ground‐truth in one‐hot representation. 1 is one

vector. The backpropagation is used to train the parameters ⋅α ( ). The

gradient is defined as:

∑ ∑
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n
(3)

3.4.2 | Local features' dimensionality reduction

A commonly used feature dimension reduction method (Jégou &

Chum, 2012) is incorporated to reduce the dimension of local fea-

tures. We first preprocess the local features with L2 normalization.

Then, their dimension is reduced using PCA to generate

40‐dimensional features. Finally, the features are processed again

through an L2 normalization, as it has been demonstrated by Jégou

and Chum (2012) that the renormalization provides a better mean

average precision in image retrieval tasks.

4 | HNSW GRAPH DATABASE

Our system employs the HNSW graph to index the generated global

features. The proposed method is selected as it constitutes a reliable

technique that outperforms other contemporary approaches, such as

tree‐based BoW (Muja & Lowe, 2014), product quantization (Jegou

et al., 2011), and locality sensitive hashing (Andoni & Razenshteyn, 2015).

The following subsections describe its properties and the way HNSW is

used to construct the graph‐based visual database.

4.1 | Hierarchical navigable small world

HNSW is a fully graph‐based incremental k‐nearest neighbor search

(k‐NNS) structure, as shown in Figure 2. It is based on the Navigable

Small World (NSW) model (Kleinberg, 2000), which follows a loga-

rithmic or polylogarithmic scaling of greedy graph routing. Such

models are important for understanding the underlying mechanisms

of real‐life networks' formation.

A graph G V E= ( , ) formally consists of a set of nodes (i.e.,

feature vectors) V and a set of links E between them. A link eab

connects node a with node b in a directional manner, that is, form

a to b, on HNSW. The neighborhood of a is defined as the

set of its immediately connected nodes. HNSW exploits strate-

gies for explicit selection of the graph's enter‐point node, sepa-

rates links of different length scales, and chooses neighbors

using an advanced heuristic. Then, the search process is per-

formed in a hierarchical multilayer graph, which allows logarith-

mic scalability.

4.2 | Database construction

In BoW‐based approaches, the visual vocabulary is usually con-

structed using k‐means clustering. A search index is built over the

visual words, which are generated using feature descriptors extracted

from a training data set.

F IGURE 2 An overview of the proposed loop closure detection pipeline. Global and local convolution neural network (CNN)‐based features
are extracted as the incoming image stream enters the system. The global features enter the first‐in‐first‐out (FIFO) queue, and subsequently,
they are fed into the HNSW graph (Malkov & Yashunin, 2018), to generate the incremental database. Simultaneously, the top n nearest
neighbors are retrieved using the global feature, while a brute‐force matching technique between the candidate image‐pairs is performed at the
local features space. A ratio test is implemented to eliminate false matches in conjunction with a RANSAC‐based geometrical verification check.
Finally, a temporal consistency check is employed to approve the final loop closure pair [Color figure can be viewed at wileyonlinelibrary.com]
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HNSW has the property of incremental graph building

(Malkov & Yashunin, 2018). The image features can be con-

secutively inserted into the graph structure. An integer maximum

layer l is randomly selected with an exponentially decaying

probability distribution for every inserted element. The insertion

process starts from the top layer to the next layer by greedily

traversing the graph to find the ef closest neighbors to the in-

serted element q in the layer. The found closest neighbors from

the previous layer will be used as an enter point to the next layer.

A greedy search algorithm is used to find the closest neighbors in

each layer. The process repeats until the connections of the in-

serted elements are established on the zero layer. In each layer

higher than zero, the maximum number of connections that an

element can have per layer is defined by the parameter M, which

is the only meaningful construction parameter. The construction

process of the HNSW graph is illustrated in the middle of

Figure 2.

During the mobile robot's movement, the deep global features of

the images are inserted into the graph vocabulary. The whole process

is on‐line and incremental, thus eliminating the need for prebuilt

vocabulary. Therefore, the use of HNSW ensures the robot's working

in various environments.

4.3 | k‐NN search

The k‐NN search algorithm in HNSW is roughly equivalent to the

insertion algorithm for an item in layer l = 0. The difference is that

the closest neighbors found at the ground layer are returned as the

search result. The search quality is controlled by the parameter ef .

The distance between two global features or nodes in the HNSW

graph, indicates the corresponding images' similarity. We use the

normalized scalar product (cosine of the angle between vectors) to

compute the distance of two nodes during graph construction and

k‐NN search, which is calculated as follows:

⋅

∥
∥ ⋅ ∥ ∥s

X X
X X= .pq

p
T

q
p q2 2 (4)

where spq is the distance score between images Ip, Iq and Xp, Xq are

the global description vectors. ∥ ∥X X X= T
2 denotes the Euclidean

norm of vector X . Since we aim to build a computational inexpensive

system, we have chosen to make use of the advanced vector ex-

tensions instructions to accelerate the distance computation.

5 | DETECTION PIPELINE

5.1 | System overview

As the robotic platform navigates into the working area, its incoming

sensory information, provided by the mounted camera, passes through

the CNN to extract the visual features. First, the global features enter the

first‐in‐first‐out (FIFO) queue, aiming to avoid early visited locations'

detection, and then are placed into the database. The n most similar

locations, indicated by k‐NN, are selected, while an image‐to‐image

correlation eliminates false‐positive matches through a ratio test.

Eventually, geometrical and temporal consistency checks are employed to

generate the final loop closure pair. An overview of the proposed

scheme is illustrated in Figure 2, while its steps are described in

Algorithm 5.1.

Algorithm 1 Our loop closure detection pipeline

Input: the image Ii captured by the visual sensory module during robot's

navigation; the excluded area, defined by frame Nnon as ψ ϕ× ,
where ψ is a temporal constant and ϕ is the frame rate of the
camera; the returned number of nearest neighbors n; the threshold
of inlier points τ.

Input: whether the i detection constitute a loop closure or not.

1 initialize a First In First Out (FIFO) queue Q. 2 While true do⊳
perform the loop closure detection pipeline during robot's mission.

3 I←i read the current image.

4 X L, ←i i extract global and local visual features.

5 If (i N> non) then

6 X ←pre pop the FIFO queue Q.

7 add Xpre to HNSW graph visual database.

8 k‐nearest neighbor search of Xi in the database to

obtain the n among them.

9 inlier ← −1max , ind ← −1

10 forr = 1 to ndo

11 perform geometrical verification for Li and Lr

12 Iffailed then

13 continue

14 end if

15 inlier← the number of inliers

16 Ifinlier inlier> maxthen

17 inlier inlier←max

18 ind r←

19 end if

20 end for

21 temporal consistency check for Li and Lind

22 If success then

23 Loop detected.

24 end if

25 end if

26 push Xi to the FIFO queue Q.

27 end while

6 | AN ET AL.



5.2 | Retrieval strategy

The n most similar locations are determined via the HNSW's k‐NN

search using the query's extracted global feature. Since the image

frames are captured sequentially, the adjacent locations to query,

that is, images acquired in close time proximity, are highly pos-

sible to share semantic information yielding to high similarities

among them. When searching the database this area should be

avoided, so as to keep the system safe from false‐positive de-

tections. Therefore, we use the FIFO queue to store images'

global representations. As shown in Algorithm 5.1, the global

feature Xi, belonging to image Ii, firstly enters the queue Q, and

subsequently it remains there aiming to be inserted at the HNSW

graph when the robot runs out of the non‐search area. The non‐

search area is defined based on a temporal constant ψ, and the

camera's frame rate ϕ. Consequently, when we use the current

feature as query, it will only search in database area defined via

N ψ ϕ− × , where N is the number of the entire set of camera

measurements up to time i. As a final note, the images in the non‐

search area will never appear in the results.

5.3 | Image‐to‐image matching

As described in Section 3, we extract local deep features for each in-

coming image. Thus, the matching process is performed between the

query q and the n closest neighbors based on a brute‐force matching

algorithm. This technique is rarely reported in the literature for visual data

association due to the presented high complexity. However, when low‐

dimensional floating‐point global descriptors are used, such in our case,

brute‐force matching does not demand relatively high computation time.

At last, a distance ratio check (Lowe, 2004), defined through a threshold ε,

is employed on the proposed pair.

5.4 | Geometrical verification

Our system incorporates a geometrical verification step to discard

outliers, that is, false‐positive detections. To achieve this, we com-

pute the fundamental matrix T between the chosen candidate pair of

images using a RANdom SAmple Consensus (RANSAC)‐based

scheme (Torr & Murray, 1997). We record the candidate with the

highest number of inliers when the calculation succeeds.

5.5 | Temporal consistency check

As a final step, a temporal consistency check is employed in-

tending to examine whether the aforementioned conditions are

met for β consecutive camera measurements similarly to

Tsintotas et al. (2018). This way, the proposed pipeline may lose a

possible loop closing identification in cases where the query

image is the initial in a sequence of pre‐visited locations, how-

ever, we prefer to prevent the system from wrong the identifi-

cations preserving. When the aforementioned conditions are met,

the matched pair is recognized as a loop closure event.

6 | BENCHMARK

6.1 | Benchmark data sets

Eleven challenging and publicly available image‐sequences have been

chosen to evaluate the performance of our framework. These data sets

are captured in different operating environments, for example, various

lighting conditions, strong visual repetition, and dynamic occlusions such

as cars and pedestrians. A detailed description of each image‐sequence is

listed inTable 1. Regarding KITTI vision suite (Geiger et al., 2012), Malaga

2009 Parking 6L (Malaga6L) (Blanco et al., 2009), and St. Lucia (Glover

et al., 2010), the incoming visual stream is obtained via a camera mounted

on a moving car, while New College (Smith et al., 2009), and City Center

(Cummins & Newman, 2008) are recorded through the vision system of a

wheeled robot. Malaga6L, New College and City Center are composed of

stereo images; in the course of our experiments, we have chosen the left

camera stream for the first and the right camera for the rest. Our ex-

perimental setup is chosen according to the work of Kazmi and

Mertsching (2019).

6.2 | Ground truth labeling

Commonly, the ground truth data, referring to the correct loop

events, is generated according to the global positioning system

(GPS) logs. For example, St. Lucia and Malaga6L utilize a GPS

distance‐range of 10 and 4 m from the query, respectively, to

define the ground truth. We carefully checked this data for each

data set recognizing that some image pairs were not accurately

labeled, as shown in Figure 3. In many cases, this occurs owing to

the robot traversing through locations that surpass the GPS's

distance threshold, though the captured visual content might be

similar. However, in such cases, if a valid fundamental matrix is

computed, the transformation matrix between the two camera

poses can be available. Such pairs should be treated as true‐

positive loop closure events. Another problem concerns the si-

tuation wherein the robot's viewpoint differs from the viewpoint

confronted in its first traversal. Regardless of the system being

precisely located at the same place, these image pairs are con-

sidered true negative events. An exemplar case of this situation is

illustrated in Figure 4.

Considering the GPS logs are not accurate, we adopt human

labeling for the ground truth generation. We produce image pairs

which are located less than 40m in GPS logs. Then these pairs are

labeled by asking whether they are from the same place by crowd-

sourcing. During labeling, if a decision was hard to be taken, the
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proposed pairs are rechecked by experts familiar with the place re-

cognition task. Each of the aforementioned data sets is processed

two times before used, while for the KITTI image‐sequences, the data

were accurate enough avoiding this procedure. Our accurate,

manually labeled ground truth files are made publicly available to

facilitate further studies.

7 | EXPERIMENTAL RESULTS

This section presents the experiments conducted to demonstrate the

proposed pipeline's effectiveness. Our setup including training strategy,

parameters and evaluation metrics are introduced in Section 7.1, while

different settings for the proposed features' extraction module are eval-

uated in Section 7.2. Next, we analyze the HNSW parameterization in

Section 7.3, and evaluate the geometrical verification process in

Section 7.4. A comparison of our global feature with two contemporary

CNN‐based features is presented in Section 7.5. The system's perfor-

mance and quantitative comparison with the state‐of‐the‐art are pre-

sented in Section 7.6. Finally, we measure our system's complexity on the

representative data sets in Section 7.7.

7.1 | Experimental settings

7.1.1 | Training strategy

Since our feature extractor is hard to get trained directly, owing to

the employment of the attention module, a two‐step strategy is ap-

plied. First, our base network is trained, leaving the attention module

out; subsequently, two fully connected layers (FCLs) are adjoined for

the classification. ResNet50, upon which the proposed system is

TABLE 1 Descriptions of the used data sets

Data set Description
Image
resolution (px) # images

Frame
rate (Hz) Distance (km)

KITTI (Geiger et al., 2012) Seq# 00 Outdoor, dynamic 1241 × 376 4541 10 3.7

Seq# 02 1241 × 376 4661 5.0

Seq# 05 1226 × 370 2761 2.2

Seq# 06 1226 × 370 1101 1.2

Oxford New College (Smith et al., 2009) Outdoor, dynamic 512 × 384 52480 20 2.2

City Center (Cummins &
Newman, 2008)

640 × 480 1237 10 1.9

Malaga 2009 (Blanco
et al., 2009)

Parking 6L Outdoor, slightly
dynamic

1024 × 768 3474 7 1.2

St. Lucia (Glover
et al., 2010)

100909 (12:10) Outdoor, dynamic 640 × 480 19,251 15 ~17.6

100909 (14:10) 20,894

180809 (15:45) 21,434

190809 (08:45) 21,815

(a) (b) (c) (d) F IGURE 3 Examples of image pairs which
are not correctly labeled in the ground truth
data derived via the global positioning system
logs. (a) Malaga6L, (b) New College, (c) City
Center, and (d) St. Lucia 100909 (12:10)
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built, is trained on the ImageNet (Russakovsky et al., 2015) and then

the model is fine‐tuned on a large‐scale landmark data set (Weyand

et al., 2020). The cross‐entropy loss is used for the image

classification.

Next, when the base network is trained, its weights are

squeezed. The attention module is added, and the resulted score map

is used to pool the features by a weighted sum. Subsequently, the

features enter the fully connected layer for the classification with the

cross‐entropy loss. Finally, we use this model to obtain discriminative

deep features.

7.1.2 | Training parameters

Our network was trained through the stochastic gradient descend

(SGD) optimizer. An initial learning rate of 0.001 and 25 epochs as the

maximum number for training was selected, with its rate being halved

every 10 epochs. Similarly, the same optimizer was chosen for the

attention module with an initial learning rate set at 0.01 at the

maximum number of 20 epochs, while the learning rate is halved

every 10 epochs. We implemented the two networks using the batch

size of 256.

7.1.3 | Baseline approaches

The compared methods include classic and recently published

place recognition systems namely: DLoopDetector (Gálvez‐López

& Tardós, 2012), Tsintotas et al. (2018), PREVIeW (Bampis

F IGURE 4 A labeling correction: the image sequence in the first row shows the robot's trajectory as it turns to the right road, while in the
second row, it turns to the left road at the same place. Frames #835 and #147 are visually different but are labeled as loops according to the
GPS, for its distance is lower than 10m. During our experiments, these images are considered as true negative pairs

TABLE 2 The recall at 100% precision and the feature extraction speed (ms) on different scales of global and local features

Scales (Local)
0.25 0.35 0.5 0.7 1.0 1.4 2.0

Scales (Global) recall speed recall speed recall speed recall speed recall speed recall speed recall speed

0.25 0.9123 8.11 0.9073 8.90 0.9010 10.01 0.9123 12.54 0.9135 16.49 0.9261 28.25 0.9236 56.07

0.35 0.8972 8.73 0.9273 9.40 0.9110 10.56 0.9110 13.19 0.8960 17.14 0.8960 28.86 0.9023 56.28

0.5 0.8972 9.61 0.9110 10.28 0.9098 11.23 0.9261 14.00 0.9110 17.93 0.9492 29.62 0.9480 57.15

0.7 0.8972 11.73 0.9110 12.41 0.8997 13.56 0.9248 16.09 0.9098 19.90 0.9492 31.79 0.9492 59.01

1.0 0.8910 14.61 0.8985 15.25 0.8935 16.22 0.9261 18.77 0.9035 22.64 0.9211 34.53 0.9323 61.90

1.4 0.8922 20.95 0.9035 21.69 0.8935 22.47 0.9286 24.96 0.9048 28.89 0.9223 40.26 0.9336 68.97

2.0 0.8947 35.08 0.9023 35.57 0.8960 36.46 0.9261 38.95 0.9060 42.76 0.9223 53.97 0.9336 81.00

TABLE 3 Parameters list

Image scale for global feature extraction sg 0.5

Image scale for local feature extraction sl 1.4

Score threshold of local feature δ 15

Number of nearest to q elements to return, ef 40

Maximum number of connections for each element per
layer, M

48

Search area time constant, ψ 40

Ratio of ratio test, ε 0.7

Images temporal consistency, β 2

Number of of matches for geometrical verification, n 5
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et al., 2018), iBoW‐LCD (Garcia‐Fidalgo & Ortiz, 2018),

Kazmi et al. (Kazmi & Mertsching, 2019), as well as our previous

method (An et al., 2019). Most of the chosen methods are im-

plemented using the respective open‐source codes. For Kazmi's

method, we directly report their results as published in their

article.

7.1.4 | Evaluation metrics

For the loop closure detection task, the commonly used metric is the

recall rate at 100% precision. The precision‐recall metric is defined as:

Precision =
True positives

True positives + False positives
, (5)

Recall =
True positives

True positives + False negatives
, (6)

where true‐positives is the number of correct identifications, in-

dicating the detected loop closures are true loops according to the

ground truth. False‐positives is the number of wrong detections,

representing the identifications found by the algorithm; however,

these are not labeled to ground truth. False‐negatives indicate the

number of true loop closure events, which are not found by the

algorithm.

F IGURE 5 Evaluating the parameter M on KITTI 00 (Geiger et al., 2012) and New College (Smith et al., 2009). (Left) Our pipeline's recall
scores for perfect precision using a variety of values ranging from 6 to 48. (Right) The timing needed for new feature addition and database
search

F IGURE 6 Evaluating the parameter ef on KITTI 00 (Geiger et al., 2012) and New College (Smith et al., 2009). (Left) Our pipeline's recall scores for
perfect precision using a variety of values ranging from 20 to 300. (Right) The timing needed for new feature addition and database search
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F IGURE 7 The searching time for different k
on the KITTI 00 data set (Geiger et al., 2012) and
the New College data set (Smith et al., 2009)

F IGURE 8 Evaluating the parameter n on KITTI 00 (Geiger et al., 2012) and New College (Smith et al., 2009). (Left) Our pipeline's recall
scores for 100% precision using a variety of values n. (Right) The timing needed for geometrical verification

F IGURE 9 The image matching time of our algorithm on the KITTI 00 data set (Geiger et al., 2012) (Left) and the New College data set (Smith
et al., 2009) (Right) using different matching strategies
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TABLE 4 Recalls at 100% precision: a
comparison of our method with different
CNN‐based global features

Data set
NetVLAD (Arandjelovic
et al., 2016)

Resnet50‐AP‐GeM
(Revaud et al., 2019) FILD++

KITTI Seq# 00 91.88 91.24 94.92

Seq# 02 74.77 73.21 73.52

Seq# 05 91.81 94.70 95.42

Seq# 06 98.90 97.79 98.16

Oxford New College 83.35 84.85 82.37

City Center 89.84 90.56 90.01

Malaga 2009 Parking 6L 59.83 60.11 62.74

St. Lucia 100909 (12:10) 80.46 79.26 83.39

100909 (14:10) 63.80 58.10 66.41

180809 (15:45) 79.67 69.36 81.36

190809 (08:45) 83.21 82.91 87.86

Note: Bold values denotes the best.

TABLE 5 Average feature extraction time (ms) comparison of our method with different CNN‐based global features

Methods KITTI 00 City Center Malaga6L St. Lucia 100909 (12:10)

NetVLAD (Arandjelovic et al., 2016) 105.60 94.25 131.07 85.97

Resnet50‐AP‐GeM (Revaud et al., 2019) 22.60 19.90 35.33 16.93

Proposed Global Feature 11.23 8.38 17.25 8.54

Note: Bold values denotes the best.

TABLE 6 Recalls at 100% precision: a comparison of the baseline methods with our framework

Data set

DLoopDetector
(Gálvez‐López &
Tardós, 2012)a

Tsintotas et al.
(Tsintotas
et al., 2018)

PREVIeW
(Bampis
et al., 2018)b

iBoW‐LCD
(Garcia‐Fidalgo
& Ortiz, 2018)c

Kazmi et al.
(Kazmi &
Mertsching,2019)d

FILD (An
et al., 2019) FILD++

KITTI Seq# 00 72.43 93.18 89.47 76.50 90.39 91.23 94.92

Seq# 02 68.22 76.01 71.96 72.22 79.49 65.11 73.52

Seq# 05 51.97 94.20 87.71 53.07 81.41 85.15 95.42

Seq# 06 89.71 86.03 80.15 95.53 97.39 93.38 98.16

Oxford New College 47.56 52.44 80.87 73.14 51.09 76.74 82.37

City Center 30.59 16.30 49.63 82.03 75.58 66.48 90.01

Malaga 2009 Parking 6L 31.02 59.14 33.93 57.48 50.98 56.09 62.74

St. Lucia 100909 (12:10) 37.22 26.27 60.93 70.02 80.06 76.06 83.39

100909 (14:10) 14.87 9.77 23.06 68.06 58.10 53.84 66.41

180809 (15:45) 31.36 15.07 49.79 87.50 72.55 66.96 81.36

190809 (08:45) 39.78 27.68 56.69 59.36 80.13 78.00 87.86

aCompared to Gálvez‐López and Tardós (2012), we use different number of images for New College and Malaga6L. We have changed the normalized
similarity score threshold to achieve 100% precision, as there are false detections using the default parameters.
bWe report the recall using the default parameters. However, the precision of each data set cannot achieve 100%.
cWe report the iBoW‐LCD recalls on KITTI data set from Kazmi and Mertsching (2019).
dWe quote the results as reported in Kazmi and Mertsching (2019), as an open‐source implementation were not available.
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7.1.5 | Implementation

Experiments were performed on a Linux machine with

an Intel Xeon CPU E5‐2640 v3 (2.60 GHz) and an NVIDIA Tesla

P40 GPU. More specifically, only feature extraction was

performed on the GPU; any other operation ran on the CPU. The

proposed network is implemented via TensorFlow, yet bindings

are provided in C++. Besides, to test the speed on embedded

devices, we additionally implemented FILD++ on an NVIDIA

Jetson TX2 GPU and report the respective outcome in

Section 7.7.

7.2 | Image scales evaluation

The original DELF utilizes image pyramids to generate descriptors of

different scales. It uses seven different scales ranging from 0.25 to 2.0,

which are a 2 factor apart. As processing times are crucial for mobile

robotic applications, we propose to use only one scale for global feature

extraction and another one scale for local feature extraction.

We conduct extensive experiments to evaluate the recall and the

extraction speed of using different feature extraction scales. For

KITTI 00 data set, the results of different combination of scales for

extracting global and local features are given in Table 2. The three

F IGURE 10 Our algorithm's precision‐recall
curves on each evaluated data set

(a) (b) (c) (d)

F IGURE 11 Some example images of the detected loop‐closure locations. (a) Malaga6L, (b) New College, (c) City Center, and (d) St.
Lucia 100909 (12:10)
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highest recall scores are marked in blue. As shown, the scales of 0.7

and 2.0 for global and local features, respectively, reach the highest

recall rate at 100% precision. A similar score is obtained at the scales

of 0.5 and 0.7 for global features and 1.4 for local features. However,

considering the extraction time, we chose the scales of 0.5 and 1.4

which achieve the same recall through a timing below 30ms. It is also

notable that for the scales of 0.25 for both global and local deep

features, the extraction time is only 8.11ms. Our algorithm's

parameters are summarized in Table 3, determined via the experi-

mentation reported in Sections 7.2, 7.3, and 7.4.

7.3 | HNSW parameters' evaluation

For HNSW graph construction and searching, there are two

parameters that could affect the search quality: the number of

F IGURE 12 Robot trajectories (left) and
example images (right). From top to bottom: KITTI
00 (Geiger et al., 2012), KITTI 06 (Geiger
et al., 2012), City Center (Cummins &
Newman, 2008), Malaga6L (Blanco et al., 2009),
St. Lucia 100909 (12:10) (Glover et al., 2010). The
loop closure detections are labeled using red
circles
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nearest to q elements to return, ef ; and the maximum number of

connections for each element per layer, M. The range of the

parameter ef should be within 300, because the increase in ef will

lead to little extra performance but in exchange, significantly

longer construction time. The range of the parameterM should be

5–48 (Malkov & Yashunin, 2018). The experiments in Malkov and

Yashunin (2018) show that a biggerM is better for high recall and

high dimensional data, which also defines the memory con-

sumption of the algorithm.

We perform the experiments on the KITTI 00 and the New

College data sets to choose M and ef for the HNSW graph. The

parameter ef is set to 40 when we changeM. The number of matches

for geometrical verification n is set to 5. As 100% precision can be

reached with the temporal consistency check. The recalls are shown

in the left part of Figure 5. We can see when M increases, the recall

will also increase. In the right part of Figure 5, the feature adding time

and searching time will be increased whenM increases. To achieve a

better recall, we choose M = 48 in the following experiments.

For evaluating different ef , it can be seen that in the left part of

Figure 6, the recall does not significantly change when the ef in-

creases. In the right part of Figure 6, the feature adding time will be

increased when ef increases, while the searching time remains with

no growth. Therefore, ef = 20 was selected.

Besides, we evaluate the searching time of the HNSW graph for

different returned number k of nearest neighbors. As shown in

Figure 7, we can see that the searching method costs nearly loga-

rithmic time when increase the returned nearest neighbors. The time

cost accords with the time complexity of the HNSW graph (Malkov &

Yashunin, 2018).

7.4 | Evaluating geometrical verification

As image‐to‐image matching through RANSAC is computationally

costly, we evaluate the parameter n using values ranging from 1

to 10. As shown in Figure 8, the timing needed for geometrical

verification increases linearly with n, as a new RANSAC estima-

tion needs to be done on each round. For KITTI 00, timing varies

from 0.73 to 7.59 ms for n = [1, 2, 3, …, 10]. New College timing

varies from 0.61 to 6.72 ms. However, the higher the value of n

the better the performance. Aiming to achieve a trade‐off be-

tween recall and computational complexity, we have chosen

n = 5. We empirically fix the ratio test ε to 0.7. This value is

frequently used for image matching using SIFT (Lowe, 2004) and

SURF (Bay et al., 2006).

Furthermore, we evaluate the processing time for two different

image matching strategies namely: the FLANN matcher (Muja &

Lowe, 2009) and brute‐force matcher. As shown in Figure 9, the

brute‐force matcher's timing is significantly lower than FLANN. For

KITTI 00, the average score is 3.32ms, while for FLANN is 40.70ms.

Respectively, for New College, the timings are 0.91 and 15.62ms.

This happens due to the proposed local features' low dimension (40‐

dimensional).

7.5 | Evaluating deep global features

A comparison of our global feature against two other con-

temporary CNN‐based features is presented. NetVLAD

(Arandjelovic et al., 2016) and Resnet50‐AP‐GeM (Revaud

et al., 2019) have been selected since these are the features

commonly used as feature extractors in place recognition. For

our experiments, features extracted from NetVLAD and

Resnet50‐AP‐GeM replaced our global representations. How-

ever, the other modules remain the same. As we can see in

Table 4, the features provided by FILD++ achieve the highest

recall rate in most of the evaluated data sets. We also recorded

the timing needed for feature extraction when different

TABLE 7 Average execution time
(ms/query) on the representative data sets Approach KITTI 00 City Center Malaga6L

St. Lucia
100909 (12:10)

DLoopDetector (Gálvez‐López &
Tardós, 2012)

111.04 27.51 42.57 91.04

Tsintotas et al. (Tsintotas et al., 2018) 521.54 183.23 638.61 625.05

PREVIeW (Bampis et al., 2018) 32.39 34.09 36.33 25.40

FILD (An et al., 2019) 62.68 40.23 68.16 49.10

FILD++ 38.70 32.10 56.56 34.20

TABLE 8 Average execution time (ms/query) of our method in
different data sets

Stages KITTI 00
City
Center Malaga6L

St. Lucia
100909 (12:10)

Feature extraction 29.67 22.04 45.41 22.48

Adding feature 4.69 4.30 3.63 6.03

Graph searching 0.64 0.33 0.47 0.70

Feature matching 3.32 2.17 4.13 2.26

RANSAC 0.38 3.26 2.92 2.73

Whole system 38.70 32.10 56.56 34.20
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extractors are used inTable 5. Our method requires only 11.23 ms

when applied on City Center, while NetVLAD and Resnet50‐AP‐

GeM need 105.60 and 22.60 ms, respectively. The results show

that our global feature outperforms the other methods in terms

of speed and recall.

7.6 | FILD++ performance

In Table 6, we list our system's highest recall score at 100% precision

on 11 data sets, while compared to the baseline methods. As shown

FILD++ outperforms the other methods on 8 out of 11 image‐

sequences. Malaga6L is recorded at a parking site, thus presents high

scene similarity due to the absence of distinct differences between

the roads. Therefore, each of the evaluated methods performs

poorly. As far as the KITTI vision suite and Oxford data sets are

concerned, improved performance is demonstrated. This is mostly

owing to architectural constructions appearing in these environ-

ments, which are similar to the training set of our feature extraction

network. Hence, our pipeline can extract more representative deep

features and compare them more precisely for these types of scenes.

Figure 10 illustrates the precision‐recall curves generated by

varying the number of RANSAC inliers. Our framework can suc-

cessfully detect loops through a recall score ranging from 62.74%

(Malaga6L) to 98.16% (KITTI 06). Malaga6L is the most

F IGURE 13 Execution times of our algorithm

TABLE 9 Average execution time (ms/query) in New College
with 52480 images

Stages Mean SD Max Min

Feature extraction 14.62 0.65 21.13 12.30

Adding feature 3.97 2.47 22.63 0.04

Graph searching 0.67 0.19 3.20 0.04

Feature matching 1.06 0.10 14.04 0.08

RANSAC 1.72 1.08 17.01 0.0

Whole system 22.05 5.04 58.98 14.56
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challenging data set and KITTI 06 is the smallest data set among

the rest. Some examples of TP detections are shown in Figure 11.

It is worth noting that when dynamic objects are included, for

example, cars in Figure 11a and people in Figure 11c, FILD++ can

correctly identify the previsited location. The example in

Figure 11b demonstrate that our system can handle the view-

point changes, while Figure 11d shows its ability to deal with

illumination variations. We show the loop closure detections

detected by our framework on to of the robot's trajectories in

Figure 12.

F IGURE 14 Execution times in New College
with 52,480 images

F IGURE 15 Execution times on an NVIDIA Jetson TX2 GPU
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7.7 | Time requirements

We have estimated our system's complexity on four representative

data sets. As shown in Table 7, FILD++ achieves a higher speed than

its predecessor. In general, this improvement is owing to the local

features' low dimensionality which permits faster image matching.

The average execution times for different pipeline stages are

presented in Table 8. Also, in Figure 13, we present the timings for

features' extraction and loops' detection as a function of frame

number. As illustrated, FILD++ requires constant time for each data

set, while the features' extraction is the most costly procedure. For

Malaga6L, our pipeline needs about 50 to 80ms for the total ex-

ecution time, while the feature extraction requires about 45ms. This

happens due to the images' resolution, which is the largest among the

evaluated data sets. Concurrently, for St. Lucia, the average timing is

below 40ms, because of the different image resolution. Furthermore,

it is observed that the timing for our indexing graph‐based technique

is below 1ms and the whole system's speed ranges from 32 to 57ms

demonstrating FILD++'s high efficiency. In Table 9, we test our sys-

tem's scalability setting the frequency of New College to f = 20Hz

and obtained 52,480 images. The average execution time is about

22ms. As can be seen in Figure 14, an increase of frames number

would not induce a rise of processing time.

We also implemented our algorithm on the Jetson TX2 platform

in Max‐N mode (all CPU cores in use and GPU clocked at 1.3GHz)

and show the timing in Figure 15. FILD++ does not require extra

processing time even if applied in an embedded platform. The most

time‐consuming stage is the features' extraction as we perform two

forward passes for each image frame. InTable 10, we list the average

time for the feature extraction, the loop detection and the whole

system. The proposed system processes Malaga6L in 388.66ms,

while for any other data set, processing times are below 300 ms

indicating its low computational complexity.

8 | DISCUSSION AND CONCLUSION

In this article, a visual loop closure detection approach is proposed,

dubbed as FILD++. Through two forward passes of a single network,

our system extracts global and local deep features for filtering and

reranking, respectively. Along with the robot's navigation, an HNSW

graph is built incrementally based on the global features permitting

fast indexing and database search during query. When a candidate

location is retrieved it is geometrically verified using the provided

local features. Eleven publicly available data sets are chosen for our

evaluation showing FILD++'s effectiveness and efficiency compared

with other state‐of‐the‐art approaches.

The proposed FILD++ framework has three advantages com-

pared with the previous FILD method. First, the proposed framework

is more compact. This is because only one network was used for

feature extraction. In addition, the extracted deep local features are

only 40‐dimensional, which is significantly lower than SURF

(128‐dimensional). Because there is only one network and without

the usage of CasHash (Cheng et al., 2014), the source code of FILD++

is more concise than FILD, as given in the GitHub2. Besides, the

dimension of global feature in FILD++ is also lower than that in FILD,

which is 1024‐dimensional versus 1280‐dimensional.

Second, the proposed method is simpler than the previous

method. For feature extraction, FILD extracts global features using

MobileNetV2 and local features using SURF. We simplify the feature

extraction process in this study. The deep global features and local

features are extracted via two forward passes of a single network.

This dramatically simplifies the feature extraction process. Because

the dimension of the deep local feature extracted by our method is

only 40‐dimensional, we can use a brute‐force matcher for efficient

feature matching. Therefore we did not use CasHash (Cheng

et al., 2014) in FILD++. As a result, the hash code creation process is

unnecessary, which simplifies the whole process.

Last but not least, FILD++ is much faster than its previous ver-

sion. As shown in Table 7, FILD++ costs 38.70ms per query on KITTI

00 data set, while FILD requires 62.68ms. Thus, it can be seen that

FILD++ is significantly faster than FILD on all data sets. Table 11 also

shows the average execution time of FILD and FILD++ in the New

College data set (52,480 images). As can be seen, the feature ex-

traction in FILD needs more time than in FILD++. The hash codes

creation step in FILD is also time‐consuming, while there is no such

step in FILD++. Because SURF features in FILD are different from the

deep local features, we extracted in FILD++, the timing for RANSAC

scheme is different. We can see our approach also takes less time at

TABLE 10 Average Execution Time (ms/query) on an NVIDIA
Jetson TX2 GPU

Stages KITTI 00
City
Center Malaga6L

St. Lucia
100909 (12:10)

Feature extraction 200.12 135.97 292.06 128.19

Loop detection 78.84 68.44 96.60 72.39

Whole system 278.96 204.41 388.66 200.58

TABLE 11 Average execution time (ms/query) of FILD (An
et al., 2019) and FILD++ in New College with 52,480 images

Method FILD (An et al., 2019) FILD++

Feature extraction 17.69 14.62

Hash codes creation 16.94 0.0

Adding feature 5.21 3.97

Graph searching 0.93 0.67

Feature matching 2.23 1.06

RANSAC 7.55 1.72

Whole system 50.28 22.05

2https://github.com/anshan-ar/FILD
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this step. The overall time cost of the proposed FILD++ is 22.05ms

per query, while for FILD is 50.28ms. This indicates the speed ad-

vantage of our new method when applied in large data sets.

Our system's performance depends on several factors: the re-

liability of its deep features, the HNSW's retrieval precision, and the

effectiveness of the geometrical verification. The similarity scores of

the query and the candidate images are not utilized. A proper

threshold may have helped us with FP elimination; however, the

complexity of the system would be inevitably high. During geome-

trical verification, as the number of matches n is an important para-

meter, the easiest way to achieve a higher recall is to increase its

value. Howbeit, as illustrated, such action is time‐demanding; there-

fore, a convenient trade‐off is considered.

Our plans include the integration of the proposed method to a

SLAM framework, while an increase of the classification accuracy will

lead to higher performance. Consequently, using more powerful

networks, such as ResNeXt (Xie et al., 2017) and ResNeSt (Zhang

et al., 2020), we should be able to improve the system's performance.

ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge Dr. Mark Cummins for

his kindly help and Guangfu Che, whose constructive suggestions

helped the system evaluation. This study was funded by grants from

the National Key R&D Program of China (Grant No.

2021YFB2700300).

ORCID

Shan An http://orcid.org/0000-0001-7796-6952

Haogang Zhu http://orcid.org/0000-0003-1771-2752

Antonios Gasteratos http://orcid.org/0000-0002-5421-0332

REFERENCES

Amanatiadis, A., Kaburlasos, V., Gasteratos, A., & Papadakis, S. (2011).
Evaluation of shape descriptors for shape‐based image retrieval. IET

Image Processing, 5, 493–499.
An, S., Che, G., Zhou, F., Liu, X. L., Ma, X., & Chen, Y. (2019). Fast and

incremental loop closure detection using proximity graphs. In: IEEE/

RSJ International Conference on Intelligent Robots and Systems, (pp.
378–385).

Andoni, A., & Razenshteyn, I. (2015). Optimal data‐dependent hashing for
approximate near neighbors. In: Proceedings of ACM Symposium of

Theory of computing (pp. 793–801).
Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. (2008). Fast and incremental

method for loop‐closure detection using bags of visual words. IEEE

Transactions on Robotics, 24, 1027–1037.
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2016). Netvlad:

CNN architecture for weakly supervised place recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition (pp.

5297–5307).
Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural

codes for image retrieval. In: European Conference on Computer

Vision (pp. 584–599). Springer.
Bampis, L., Amanatiadis, A., & Gasteratos, A. (2016). Encoding the

description of image sequences: A two‐layered pipeline for loop
closure detection. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 4530–4536).

Bampis, L., Amanatiadis, A., & Gasteratos, A. (2018). Fast loop‐closure
detection using visual‐word‐vectors from image sequences.
International Journal of Robotics Research, 37, 62–82.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust

features. In: European Conference on Computer Vision (pp. 404–417).
Blanco, J.‐L., Moreno, F.‐A., & Gonzalez, J. (2009). A collection of outdoor

robotic datasets with centimeter‐accuracy ground truth.
Autonomous Robots, 27, 327.

Bosch, A., Zisserman, A., & Munoz, X. (2007). Representing shape with a

spatial pyramid kernel. In: Proceedings of ACM IntInternational

Conference on Image and Video Retrieval (pp. 401–408). ACM.
Botterill, T., Mills, S., & Green, R. (2011). Bag‐of‐words‐driven, single‐

camera simultaneous localization and mapping. Journal of Field

Robotics, 28, 204–226.
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J.,

Reid, I., & Leonard, J. J. (2016). Past present and future of
simultaneous localization and mapping: Toward the robust‐
perception age. IEEE Transactions on Robotics, 32, 1309–1332.

Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). Brief: Binary robust

independent elementary features. In: European Conference on

Computer Vision (pp. 778–792).
Cascianelli, S., Costante, G., Bellocchio, E., Valigi, P., Fravolini, M. L., &

Ciarfuglia, T. A. (2017). Robust visual semi‐semantic loop closure

detection by a covisibility graph and cnn features. Robotics and

Autonomous Systems, 92, 53–65.
Chan, T.‐H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A

simple deep learning baseline for image classification? IEEE

Transactions of Image Processing, 24, 5017–5032.
Chancán, M., Hernandez‐Nunez, L., Narendra, A., Barron, A. B., & Milford, M.

(2020). A hybrid compact neural architecture for visual place recognition.
IEEE Robotics and Automation Letters, 5, 993–1000.

Chen, Z., Jacobson, A., Sünderhauf, N., Upcroft, B., Liu, L., Shen, C., Reid, I.,
& Milford, M. (2017). Deep learning features at scale for visual place

recognition. In: IEEE International Conference on Robotics and

Automation (pp. 3223–3230).
Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning context flexible

attention model for long‐term visual place recognition. IEEE Robotics

and Automation Letters, 3, 4015–4022.
Cheng, J., Leng, C., Wu, J., Cui, H., & Lu, H. (2014). Fast and accurate

image matching with cascade hashing for 3d reconstruction. In: IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1–8).

Chow, C., & Liu, C. (1968). Approximating discrete probability

distributions with dependence trees. IEEE Transactions on

Information Theory, 14, 462–467.
Cummins, M., & Newman, P. (2008). FAB‐MAP: Probabilistic localization

and mapping in the space of appearance. International Journal of
Robotics Research, 27, 647–665.

Cummins, M., & Newman, P. (2011). Appearance‐only SLAM at large scale
with FAB‐MAP 2.0. International Journal of Robotics Research, 30(9),
1100–1123.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2001).
Incorporating second‐order functional knowledge for better option

pricing. In Advances in Neural Information Processing Systems (pp.
472–478).

Engel, J., Stückler, J., & Cremers, D. (2015). Large‐scale direct slam with
stereo cameras. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 1935–1942).
Filliat, D. (2007). A visual bag of words method for interactive qualitative

localization and mapping. In: IEEE International Conference on

Robotics and Automation (pp. 3921–3926).
Gálvez‐López, D., & Tardós, J. D. (2012). Bags of binary words for fast

place recognition in image sequences. IEEE Transactions on Robotics,
28, 1188–1197.

AN ET AL. | 19

http://orcid.org/0000-0001-7796-6952
http://orcid.org/0000-0003-1771-2752
http://orcid.org/0000-0002-5421-0332


Garcia‐Fidalgo, E., & Ortiz, A. (2015). Vision‐based topological mapping
and localization methods: A survey. Robotics and Autonomous

Systems, 64, 1–20.
Garcia‐Fidalgo, E., & Ortiz, A. (2017). Hierarchical place recognition for

topological mapping. IEEE Transactions on Robotics, 33, 1061–1074.
Garcia‐Fidalgo, E., & Ortiz, A. (2018). iBoW‐LCD: An appearance‐based

loop‐closure detection approach using incremental bags of binary
words. IEEE Robotics and Automation Letters, 3, 3051–3057.

Gehrig, M., Stumm, E., Hinzmann, T., & Siegwart, R. (2017). Visual place

recognition with probabilistic voting. In: IEEE International

Conference on Robotics and Automation (pp. 3192–3199).
Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous

driving? The KITTI vision benchmark suite. In: IEEE Conference on

Computer Vision and Pattern Recognition (pp. 3354–3361).
Glover, A. J., Maddern, W. P., Milford, M. J., & Wyeth, G. F. (2010). Fab‐

map. ratslam: Appearance‐based slam for multiple times of day. In:
IEEE International Conference on Robotics and Automation (pp.
3507–3512). IEEE.

Gordo, A., Almazán, J., Revaud, J., & Larlus, D. (2016). Deep image

retrieval: Learning global representations for image search. In:
European Conference on Computer Vision (pp. 241–257). Springer.

Hajebi, K., & Zhang, H. (2014). An efficient index for visual search in
appearance‐based slam. In: IEEE International Conference on Robotics

and Automation (pp. 353–358). IEEE.
Han, J., Dong, R., & Kan, J. (2021). A novel loop closure detection method

with the combination of points and lines based on information
entropy. Journal of Field Robotics, 38, 386–401.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (pp. 770–778).
Hou, Y., Zhang, H., & Zhou, S. (2015). Convolutional neural network‐based

image representation for visual loop closure detection. In: IEEE
International Conference on Information and Automation,

2238–2245.
Jégou, H., & Chum, O. (2012). Negative evidences and co‐occurences in

image retrieval: The benefit of pca and whitening. In: European

Conference on Computer Vision (pp. 774–787).
Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for

nearest neighbor search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33, 117–128.
Jégou, H., Douze, M., Schmid, C., & Pérez, P. (2010). Aggregating local

descriptors into a compact image representation. In: IEEE Conference

on Computer Vision and Pattern Recognition (pp. 3304–3311). IEEE.
Kazmi, S. A. M., & Mertsching, B. (2019). Detecting the expectancy of a

place using nearby context for appearance‐based mapping. IEEE

Transactions on Robotics, 35, 1352–1366.
Khan, S., & Wollherr, D. (2015). IBuILD: Incremental bag of binary words

for appearance based loop closure detection. In: IEEE International

Conference on Robotics and Automation (pp. 5441–5447).
Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small ar

workspaces. In: IEEE/ACM International Symposium on Mixed and

Augmented Reality (pp. 225–234).
Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406, 845.
Konstantinidis, K., Gasteratos, A., & Andreadis, I. (2005). Image retrieval

based on fuzzy color histogram processing. Optics Communications,
248, 375–386.

Kostavelis, I., & Gasteratos, A. (2015). Semantic mapping for mobile

robotics tasks: A survey. Robotics and Autonomous Systems, 66,
86–103.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in Neural

Information Processing Systems, 1097–1105.
Labbe, M., & Michaud, F. (2013). Appearance‐based loop closure

detection for online large‐scale and long‐term operation. IEEE

Transactions on Robotics, 29, 734–745.

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint
arXiv:1312.4400.

Liu, Y., & Zhang, H. (2012). Indexing visual features: Real‐time loop closure
detection using a tree structure. In: IEEE International Conference on

Robotics and Automation (pp. 3613–3618).
Lowe, D. G. (2004). Distinctive image features from scale‐invariant

keypoints. International Journal of Compter Vision., 60, 91–110.
Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., &

Milford, M. J. (2016). Visual place recognition: A survey. IEEE

Transactions on Robotics 32, 1–19.
MacQueen, J. (1967). Some methods for classification and analysis of

multivariate observations. In: Proceedings of Berkeley Symposium on

Mathematical Statistics and Probability (Vol. 1, pp. 281–297).
Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world
graphs. In: IEEE Transactions in Pattern Analysis and Machine

Intelligence.
Mei, C., Sibley, G., & Newman, P. (2010). Closing loops without places. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems

(pp. 3738–3744).
Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with

automatic algorithm configuration. In: International Conference on

Compter Vision Theory and Applications (Vol. 2, p. 2).

Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor algorithms for
high dimensional data. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (pp. 2227–2240).
Mur‐Artal, R., & Tardós, J. D. (2014). Fast relocalisation and loop closing in

keyframe‐based SLAM. In: IEEE International Conference on Robotics

and Automation (pp. 846–853).
Nicosevici, T., & Garcia, R. (2012). Automatic visual bag‐of‐words for

online robot navigation and mapping. IEEE Transactions on Robotics,
28, 886–898.

Noh, H., Araujo, A., Sim, J., Weyand, T., & Han, B. (2017). Large‐scale
image retrieval with attentive deep local features. In: IEEE

Conference on Computer Vision (pp. 3456–3465).
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A

holistic representation of the spatial envelope. International Journal
of Computer Vision, 42, 145–175.

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of
global image features in recognition. Progress in Brain Research, 155,
23–36.

Radenovic, F., Iscen, A., Tolias, G., Avrithis, Y., & Chum, O. (2018).

Revisiting oxford and paris: Large‐scale image retrieval
benchmarking. In: IEEE Conference on Computer Vision and Pattern

Recognition (pp. 5706–5715).
Revaud, J., Almazán, J., Rezende, R. S., & Souza, C. R. d. (2019). Learning

with average precision: Training image retrieval with a listwise loss.

In: IEEE Conference on Computer Vision (pp. 5107–5116).
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An efficient

alternative to sift or surf. In: IEEE Conference on Computer Vision (pp.
2564–2571).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., &
Fei‐Fei, L. (2015). Imagenet large scale visual recognition challenge.
International Journal of Compter Vision, 115, 211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.‐C. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE/IVF

Conference on Computer Vision and Pattern Recognition (pp.
4510–4520). IEEE.

Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to
object matching in videos. In: IEEE Conference on Computer Vision

(p. 1470).
Smith, M., Baldwin, I., Churchill, W., Paul, R., & Newman, P. (2009). The

new college vision and laser data set. International Journal of Robotics
Research, 28, 595–599.

20 | AN ET AL.



Sünderhauf, N., Shirazi, S., Dayoub, F., Upcroft, B., &Milford, M. (2015). On the
performance of convnet features for place recognition. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems (pp.
4297–4304).

Teichmann, M., Araujo, A., Zhu, M., & Sim, J. (2019). Detect‐to‐retrieve:
Efficient regional aggregation for image search. In: IEEE Conference

on Computer Vision and Pattern Recognition (pp. 5109–5118).
Torr, P. H., & Murray, D. W. (1997). The development and comparison of

robust methods for estimating the fundamental matrix. International

Journal of Computer Vision, 24, 271–300.
Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003).

Context‐based vision system for place and object recognition. In:
IEEE Conference on Computer Vision (Vol. 3, pp. 273–280).

Tsintotas, K. A., Bampis, L., & Gasteratos, A. (2018a). Assigning visual

words to places for loop closure detection. In: IEEE International

Conference on Robotics and Automation (pp. 5979–5985).
Tsintotas, K. A., Bampis, L., & Gasteratos, A. (2018b). DOSeqSLAM: Dynamic

on‐line sequence based loop closure detection algorithm for SLAM. In:
IEEE International Conference on Imaging Systems and Techniques

(pp. 1–6).
Tsintotas, K. A., Bampis, L., & Gasteratos, A. (2019). Probabilistic

appearance‐based place recognition through bag of tracked words.
IEEE Robotics and Automation Letters, 4, 1737–1744.

Tsintotas, K. A., Bampis, L., & Gasteratos, A. (2021). Modest‐vocabulary
loop‐closure detection with incremental bag of tracked words.
Robotics and Autonomous Systems, 141, 103782.

Tsintotas, K. A., Bampis, L., Rallis, S., & Gasteratos, A. (2018). SeqSLAM
with bag of visual words for appearance based loop closure

detection. In: Proceedings of International Conference on Robotics in

Alpe‐Adria Danube Region (pp. 580–587).
Tsintotas, K. A., Giannis, P., Bampis, L., & Gasteratos, A. (2019).

Appearance‐based loop closure detection with scale‐restrictive
visual features. In: Proceedings of International Conference on

Computer Vision Systems (pp. 75–87).
Wang, T.‐H., Huang, H.‐J., Lin, J.‐T., Hu, C.‐W., Zeng, K.‐H., & Sun, M.

(2018). Omnidirectional cnn for visual place recognition and
navigation. In: IEEE International Conference on Robotics and

Automation (pp. 2341–2348).

Weyand, T., Araujo, A., Cao, B., & Sim, J. (2020). Google landmarks dataset
v2‐a large‐scale benchmark for instance‐level recognition and
retrieval. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2575–2584.

Xia, Y., Li, J., Qi, L., & Fan, H. (2016). Loop closure detection for visual slam
using pcanet features. In: IEEE Joint Conference on Neural Networks

(pp. 2274–2281).
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated

residual transformations for deep neural networks. In: IEEE

Conference on Computer Vision and Pattern Recognition (pp.
1492–1500).

Xin, Z., Cui, X., Zhang, J., Yang, Y., & Wang, Y. (2019). Real‐time visual
place recognition based on analyzing distribution of multi‐scale
cnn landmarks. Journal of Intelligent & Robotic Systems, 94,

777–792.
Yu, J., Zhu, C., Zhang, J., Huang, Q., & Tao, D. (2020). Spatial pyramid‐

enhanced netvlad with weighted triplet loss for place recognition.
IEEE Transactions on Neural Networks and Learning Systems, 31,
661–674.

Zhang, H. (2011). BoRF: Loop‐closure detection with scale invariant visual
features. In: IEEE International Conference on Robotics and

Automation (pp. 3125–3130).
Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y., He, T.,

Mueller, J., & Manmatha, R. (2020). Resnest: Split‐attention
networks. arXiv preprint arXiv:2004.08955.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014).
Learning deep features for scene recognition using places
database. Advances Neural Information Processing Systems,

487–495.

How to cite this article: An, S., Zhu, H., Wei, D., Tsintotas, K.

A., & Gasteratos, A. (2022). Fast and incremental loop closure

detection with deep features and proximity graphs. Journal of

Field Robotics, 1–21. https://doi.org/10.1002/rob.22060

AN ET AL. | 21

https://doi.org/10.1002/rob.22060



