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Abstract
Simultaneous localization and mapping (SLAM) refers to a process that permits a mobile
robot to build up a map of the environment and, at the same time, to use it to compute its
location. One of its most important components is its ability to associate the most
recently perceived visual measurement to the one derived from previsited locations, a
technique widely known as loop closure detection. In this article, we evolve our previous
approach, dubbed as ‘DOSeqSLAM’ by presenting a low complexity loop closure
detection pipeline wherein the traversed trajectory (map) is represented by sequence‐
based locations (submaps). Each of these groups of images, referred to as place, is
generated online through a point tracking repeatability check employed on the perceived
visual sensory information. When querying the database, the proper candidate place is
selected and, through an image‐to‐image search, the appropriate location is chosen. The
method is subjected to an extensive evaluation on seven publicly available datasets,
revealing a substantial improvement in computational complexity and performance over
its predecessors, while performing favourably against other state‐of‐the art solutions. The
system’s effectiveness is owed to the reduced number of places, which, compared to the
original approach, is at least one order of magnitude less.

1 | INTRODUCTION

Nowadays, robotics researchers have put a tremendous
effort in developing methods to map the world through
several exteroceptive sensors [1–3]; the reason is the use-
fulness of an appropriate representation of the surround-
ings for the robot to be able to perform more elaborate
tasks such as path and task planning. It is common though
that the use case the robot should deal with impels the
map representation. Within the scope of simultaneous
localization and mapping (SLAM) methods [4], the robot
should estimate its pose as it navigates through the
working field. The importance of an efficient and robust
estimation is vital for accurate navigation to be achieved.
Thus, SLAM is sine qua non in any contemporary
autonomous system. The ability to detect and identify a
location that has previously been observed is referred to as
place recognition. Due to noisy sensor measurements or
field abnormalities, drifts occur on the robot's generated
map. Such cases are minimised and improved pose

estimation is provided through the accurate detection of
loop closures [5–10]. In many contemporary applications,
such as in aerial or space robotics, computational resources
are restricted. In such cases, efficient methods that provide
low complexity, even at the expense of performance, are
generally preferred [11–15].

Visual place recognition, the ability to identify a known
location in the environment using vision as the main
sensory input, is achieved using cameras that provide low‐
cost means for the generation of extremely rich and dense
data [16]. Owed to the increased availability of computa-
tional power during the last years, cameras became the
primary sensory unit in most autonomous mobile plat-
forms where localisation is based solely on the appearance
of the scene [17]. The main key components that consti-
tute such a pipeline are the image processing module, the
map and the belief generator module. During the agent’s
navigation, the received incoming visual measurements are
interpreted by the image processing module and, subse-
quently, their arrangement in a topological or metric
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manner formulates the environment’s map, which main-
tains the robot’s knowledge about the explored world.
Finally, the last module decides whether or not the agent
re‐encounters an already visited location. Depending on the
way by which the system maps the environment, appear-
ance‐based systems are distinguished into two main cate-
gories, namely single‐ and sequence‐based. Approaches
belonging to the first category seek for the most similar
location in the robot’s traversed trajectory greedily, while
methods of the second category search between submaps
that is, groups of individual frames, defined as places. In
both categories, the belief generator module performs data
comparisons, aiming to get a score about image similarity
based on the way the incoming images are processed. Sum
of absolute differences (SAD), local feature vote density
[18], bag of words (BoW) histograms [19] or feature
vectors derived from convolutional neural networks
(CNNs) [20] are the most common techniques. Thus, loop
closure events are indicated by comparing similarities be-
tween such map representations.

SeqSLAM [21] constitutes one of the most recognised algo-
rithm in sequence‐based visual place recognition [22–31]
exhibiting the system’s performance improvementby comparing
places to decide about its position into the world. Using a
downsample scheme within the image processing module, along
with the SADmetric, this framework achieves robust localisation
through a nearest‐neighbour distance ratio [32] technique.
However, many challenges arise when breaking the map into
places, including optimal submap size, submap overlap during
database searching, consistent semantic map segmentation, data
duplication and submap alignment [33].

To overcome these challenges, the majority of approaches,
including SeqSLAM, use a predefined number of frames to break
the map into places. Subsequently, through a sliding window
scheme, these approaches look for every possible submap cor-
relation. Although this technique improves the achieved per-
formance, its functionality is computationally costly since the
agent needs to seek and compare every possible group of images.
As a result, the system’s complexity increases since the com-
parisons are performed for images which might not exhibit the
same semantics with their neighbouring ones. Having identified
this drawback, in our previous work [34], we proposed an online
sequence‐based loop closure detection pipeline, wherein a
feature matching technique between consecutive images pro-
vides the system with dynamically defined places. This approach
searches into the traversed trajectory for similar group of images
avoiding the sliding window approach of the initial framework,
while its belief module is based on an average decision filter. The
usage of dynamic submaps showed favourable performance
against its predecessor; nevertheless, the extraction andmatching
process of local floating point features for each incoming camera
measurement burdened the computational complexity. To build
an efficient and independent from training procedure system,we
evolve our preliminary framework presenting an appearance‐
based loop closure detection pipeline which relies on a dynamic
place‐to‐place matching scheme. Local point extraction is per-
formed on the perceived visual information, and through the

Kanade‐Lucas‐Tomasi (KLT) tracker [35], a new place, that is, a
groupof images, is definedwhen contained point tracking fails to
advance in the following frame. This way the computationally
costly local feature extraction and matching of DOSeqSLAM is
avoided, while robustness is achieved regarding the place' size.
Next, the camera measurements are subjected to the image
processing module, used by both the initial approach and our
previous work, where instances are downsampled and normal-
ised. At query time, the latest constructed place seeks for the
most similar candidate through the matching score produced by
the nearest‐neighbour distance ratio. Finally, the most suitable
location is identified via an image‐to‐image association in the
SAD domain avoiding the usage of the average decision filter of
our preliminary work. The proposed framework is evaluated in
seven different environments, while also compared with its an-
cestors and other state‐of‐the‐art solutions.

The main contributions of this work are as follows:

� A low‐computational place recognition pipeline capable of
detecting loop closure events through place‐to‐place com-
parisons using almost two orders of magnitude less opera-
tions than the initial approach.

� A robust dynamic submapping for place definition based on
the extension of the point tracking. Although this process
could also be used to potentially detect the dataset key-
frames, we define a place by all the frames belonging in the
same submap, outlined by the point tracking.

� An exhaustive experimental parameter evaluation scheme
based on the number of extracted points.

The remainder of this article is organised as follows.
Section 2 provides a brief review of appearance‐based place
recognition approaches. In Section 3, the proposed pipeline is
described in detail, while Section 4 presents evaluation and
experimental results. In Section 5, the conclusions are provided.

2 | RELATED WORK

The loop closure detection pipeline proposed in [19] be-
longs to single‐based methods and makes use of the BoW
model [36] for representing the incoming image through a
pretrained visual vocabulary generated by SIFT descriptors
[32]. Additionally, a Chow‐Liu tree learns the co‐occurrence
probabilities among visual words [37]. An improved
approximation of this work allows the system to scale by
more than two orders of magnitude [38], while 3D infor-
mation further enhances the system [39]. In [40, 41], a binary
vocabulary is proposed and utilised, which is accompanied by a
geometrical verification step to enhance loop detection. To
improve the speed of the matching process in methods based on
binary vocabularies, an incremental feature‐based tree is pro-
posed in [42].

The latest works in visual loop closure detection are
inspired by the great success of CNNs in several computer
vision tasks [43–45]. These approaches address the place
recognition task by using specific layers of the architecture to
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represent an image and determine potentially revisited loca-
tions [46–56]. These layers are originally trained for object
recognition; thus, they are tightly bounded to their learning
example attributes. NetVLAD [49], an advanced version of
VLAD (vector of locally aggregated descriptors [57]), which is
commonly used for image retrieval, consists of two trainable
end‐to‐end modules. The first is a CNN extracting the image
features and the second is a fusion layer so as to form a
descriptor that mimics the behaviour of VLAD. Improving
upon CNN‐based visual place recognition, Chen et al. [51]
trained two neural networks on Specific Places Dataset
(SPED), namely AMOSNet and HybridNet. The former is
trained from scratch on SPED, while the latter uses the weights
of the top 5 convolutional layers from CaffeNet [58] which is
trained on ImageNet dataset [59]. CNN‐based description of
images that utilise only regions of interest (ROI) showed
enhanced performance compared to whole‐image descriptors.
R‐MAC (regions of maximum activated convolutions) [60] uses
max pooling on cropped areas in CNN layer features to extract
ROI. Khaliq et al. [53] combine VLAD with ROI to achieve
robustness against appearance and viewpoint variations.
However, CNNs require model training from large‐scale
labelled datasets from a multitude of environments, which is a
practical limitation. Their intense computational nature con-
stitutes a key limitation since higher run‐time memory and
feature encoding time are needed. Thus, despite the impressive
results they produce, their high demand in computational re-
sources makes these frameworks unsuitable for mobile robotic
applications [61, 62]. More specifically, the above limitations
raise deployability concerns on resource‐constrained platforms
(including battery‐powered aerial, micro‐aerial and ground
vehicles), as identified in [63]. Furthermore, their feature
extractor is viewpoint dependent since the topological infor-
mation is not provided. As a result, they remain incompatible
with the majority of SLAM applications in mobile robotics
without the utilisation of extra computational power.

While the aforementioned methods address the place
recognition task as a single instance matching process, the
sequence‐based matching frameworks aim to take advantage of
the additional information provided by a group of images in a
scene. In [64], a sequence‐based algorithm is proposed where
the distance between local scenes is used in order to find
statistically pairings between places. Similarly, in [65], the
incoming visual sensory information is segmented into
fix‐sized groups of images and represented by a common
visual‐word histogram. Using a quantitative interpretation of
temporal consistency, place‐to‐place matches that are coher-
ently advancing along time are enhanced [66]. Group of
landmarks, formulated through local feature covisibility,
generate location graph models [67], while in [68], additional
geometrical information from the observed environment
structure is used in order to increase the performance.
Vysotska et al. [69] build up a data association graph exploiting
GPS information to find a sequence of matching images in an
offline fashion. An extension of this work exploits hashing

techniques to realise efficient re‐localisation when the platform
has left the previously mapped area [70].

Compared with the methods which are based on a
pretrained description technique, incremental approaches
‘learn’ the environment during the navigation. Two visual
vocabularies—one representing image descriptors and the
other colour histograms—are generated online indenting to
detect loop closures in a Bayesian filtering scheme in [71]. By
following the incremental fashion in [72], a visual vocabulary is
proposed where the words are generated using a modified
version of agglomerative clustering. Since mobile robots have
limited computing resources, an incremental loop closure
detection approach for large scale and long term is proposed in
[73]. Most of these frameworks tackle the loop closure
detection task through the location polling of the distributed
votes originated by the local feature descriptors. In [74],
regions of high vote density are selected as loop closure can-
didates via a nearest neighbouring descriptor technique. The
IBuILD algorithm [75] proposes a binary vocabulary wherein
the extracted features are matched across consecutive images.
In [76], images with similar visual properties are stored in
groups formulating a hierarchical architecture of places, each
of which is represented by a global descriptor. The method
selects the candidate loop closing place through a query‐to‐
database comparison of the global descriptors. Subsequently,
the most likely match is retrieved through an extensive search
in the local feature space. A new approach was recently
introduced by the same authors [77], in which dynamic islands
were used to group the images based on spatiotemporal sim-
ilarity. Probabilistic voting schemes utilise the number of
aggregated votes in the database to compute a score that
indicates previsited locations [18]. A dynamic sequence seg-
mentation is performed based on the image content proximity,
while a clustering technique generates the visual words
assigned to these specific places [78]. Temporal and geomet-
rical checks are also included for the sake of performance
improvement in the incrementally constructed vocabulary of
tracked words [79]. In a similar manner, a modified version of
growing self‐organising maps [80] is proposed by [81]. Using
Gist features [82] for representing places, the map is incre-
mentally learnt, while the most active neuron is selected as loop
closure candidate during query.

Working with sequence‐based methods, many robotics
scholars evolve the well‐known SeqSLAM [23–27]. Querying
the traversed trajectory, via a Bayes filter, a subset of candidate
places are indicated, and through an extended evaluation on
the selected sequences, a faster version of SeqSLAM is pro-
vided [23]. Likewise, the authors in [24] propose an efficient
version, titled ‘Fast‐SeqSLAM’. In this work, place matching is
achieved using a histogram of gradients [83] to describe the
downsampled images, along with a k‐d tree [84] and a nearest
neighbour classifier on the descriptor space. In the work of
Wang et al. [25], a real‐time framework is presented. The visual
sliding window technique accompanied by odometry infor-
mation provides loop closure candidates, while a multiscale
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search at the selected group of images indicates the best
location match. By utilising the BoW model for representing
images, SeqSLAM obtains robustness against scale and rota-
tion variations, while the binary vocabulary generated by ORB
descriptors [85] offers a low computational pipeline [26].
Dongdong et al. [27] proposed ‘SeqCNNSLAM’, wherein
pretrained CNN output layers are utilised as image descriptors.
Comparisons are performed among CNN feature vectors and
sequence matches are accomplished by following the original
version steps. In [30], a technique is proposed that combines
properties from two existing visual place recognition methods,
which do not depend on learning examples, that is, SeqSLAM
and CoHOG [86]. A lightweight system wherein places are
compressed and represented by compact codes is proposed in
[29]. Finally, Chen et al. [46] used features from all layers of
Overfeat Network [87] and integrated it into the spatial scheme
of Seq‐SLAM.

The majority of the aforementioned algorithms in
sequence‐ and appearance‐based place recognition relies on
SeqSLAM coupled with a pretraining technique for
describing the images or the addition of extra information
along with the incoming visual sensory measurements.
However, our previous work [34] focuses on the dynamic
segmentation of the traversed path for defining places in
order to avoid the sliding window scheme. Although our
approach performs favourably against the initial pipeline,

submaps generated via feature matching tend to lose their
local feature coherence sooner than expected, while the
system's complexity remains high since feature extraction is
implemented for every image. Yet, the proposed framework
improves on its predecessor by adapting a point tracking
technique among consecutively acquired images to determine
places, while keeping its original online behaviour indepen-
dent from any training procedure.

3 | METHODOLOGY

In this section, an extended description of the proposed
loop closure detection pipeline is presented. As mentioned
previously, the algorithm formulates each place dynamically
through the KLT point tracker. To carry out the submap
definition, local keypoints are extracted from the camera
measurements. Subsequently, the SeqSLAM processing steps
are performed with the data being downsampled and nor-
malised. Each image is compared to the database through
SAD, and when a temporal constant is satisfied, the data-
base is searched for a candidate place match. Since the
main algorithm follows the initial approach, a brief
description of our previous work is provided. An outline of
the proposed visual place recognition workflow is shown in
Figure 1.

F I G U R E 1 An overview of the proposed
sequence‐based loop closure detection framework.
As the incoming visual sensory information arrives
(IP
1 ) to the pipeline, points are extracted via the

speeded‐up robust features (SURF) detection and
description algorithm [88] each time a new place
begins its generation procedure. Subsequently, the
camera measurement follows the SeqSLAM’s [21]
processing steps where it is being downsampled and
normalised before compared to the previously visited
locations in the database. When the following image
(IP

++) enters the system, points are tracked through
the Kanade‐Lucas‐Tomasi (KLT) method [35] to
dynamically define places. Finally, when point
tracking is lost and the temporal constant is satisfied,
the database is queried with the last formulated place
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3.1 | DOSeqSLAM

3.1.1 | SeqSLAM procedure

For each image I entering the system, the visual data is
converted into the greyscale equivalent and then is down-
sampled into χ pixels. In addition, the resized ones are nor-
malised in an N size local neighbourhood and comparisons
with the traversed trajectory are performed by means of SAD:

Dij ¼
1

RxRy

XRx

x¼0

XRy

y¼0
∣ρi

x;y � ρj
x;y∣; ð1Þ

where Rx and Ry denote the reduced dimensions of the im-
ages, while ρ represents each pixel's intensity value. A vector Di
for location i containing distance metric against every pre-
visited one j is generated through SAD, resulting into com-
parison matrix D. Focussing on the comparison between
sequences of images during the query procedure, a contrast
enhancement process is performed on the Di elements, which
is analogous to a 1D patch normalisation in a local area of ɛ
pixels:

bDi; μ¼
Di;μ − Dε

υε
; ð2Þ

where Dε represents the local mean and σɛ the local standard
deviation around element μ.

3.1.2 | Dynamic sequences

In order to define a dynamic group of instances in DOS-
eqSLAM, local keypoints are detected via the SURF method
[88] from each incoming visual sensory data. Utilising the full
space, projected SURF descriptors (dI) are temporarily
extracted during the online operation as long as the place
construction lasts. Through a feature matching coherence
check, new places are determined along the robot's traversed
path. Additionally, in cases where the input camera measure-
ment is unable to produce enough visual information, for
example, the system observes a blank plane, the pipeline
skips those images avoiding the construction of inconsistent
places.

More specifically, at time t, the incoming image stream
I(t − n), …, I(t − 2), I(t − 1), I(t) is segmented when the correlation
between the last n image descriptors ceases to exist:

\i¼n

i¼0
dI ðt−iÞ

�
�
�
�
�

�
�
�
�
�

≤ 1; ð3Þ

where Sj j denotes the cardinality of set S.

3.1.3 | Sequence‐based search

In order to identify a previously visited location (database),
searching is based on place comparisons. During the system’s
navigation, when the latest sequence SeqN is created, querying
the database is performed for the first frame in the previous
generated place SeqN−1. A number of trajectories are pro-
jected on the enhanced distance matrix bD for every traversed
location j. The trajectory lengths are proportional to the query
place size. Each trajectory represents a possible velocity
assumption corresponding to different robot velocities V. A
number of multiple scores sdo are calculated for every trajec-
tory assumption by averaging the accumulated values:

sdo ¼
1

seqQ
Len

XI
Q
end

IQ
1

cDk : ð4Þ

where IQ
1 and IQ

end are the first and last image timestamps of
the query sequence, respectively, seqQ

Len is the query length and
k denotes velocity assumption paths:

k¼ j þ V ðL − iþ tÞ; ð5Þ

where V is designated by multiple values within the range of
[Vmin, Vmax] (advancing by Vstep each time step t) and L
represents the sequence length.

The minimum score sdo is selected for each instance in
the navigated path, yielding an Sdo vector, wherein the
lowest value is selected for the particular location Ij. Sub-
sequently, this score is normalised over the second lowest
value outside of a window WDOSeq [34] resulting to γ. Lastly,
an average weighted filter is applied for the final decision. A
candidate loop closure sequence is determined when factor γ
is satisfied and the system performs an additional greedy
image‐to‐image search into the SAD submatrix for single‐
image associations.

3.2 | Tracking‐DOSeqSLAM

Feature tracking is essential for several high‐level com-
puter vision tasks such as motion estimation [89], struc-
ture from motion [90] and image registration [91]. Since
the earliest works, feature trackers have been used as a de
facto tool for handling points in a video. We have chosen
to use a tracker based on a floating point, local feature
detection and description algorithm during the navigation
procedure. Through point tracking we achieve to dynam-
ically segment the incoming visual stream and determine a
place. This way, the computationally demanding procedure
of feature detection and description for every incoming
frame, which is used in our previous work [34], is
avoided.
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Algorithm 1 Place definition

Input: I: Incoming image, P: Place index,
LP: Place length

Output: P: Place index, LP : Place length
1 if LP==0 then
2 SPI=detectSURF(I)//extract_SURF

keypoints from I
3 TPI−1=KLT(SPI)//initialize tracked

points
4 numTrackedPoints=sum(TPI−1)
5 LP++
6 else
7 TPI−1=KLT(TPI, I)//track points in I
8 TPI−1=TPI//set tracked points for next

iteration
9 numTrackedPoints=sum(TPIP)
10 LP++
11 end
12 if numTrackedPoints <1 then
13 P++
14 LP=0
15 end

3.2.1 | Place definition through tracking

In contrast to our previouswork, in the proposed framework, the
place definition is based on a repeatability check of point
occurrence between consecutive frames. A set of ξ SURF key-

points SPIP
1
¼ sp1IP

1
; sp2IP

1
;…; spIP

1

ξ
n o� �

is detected in the first

location of each place (IP
1). Subsequently, the points are fed into a

KLT tracker along with the next perceived visual measurement
(IP

++), yielding to a set of tracked points

TPIP
þþ
¼ tp1IP

þþ

; tp2IP
þþ

;…; tpξ
IP
þþ

n o� �
. Points in IP

1þþ are browsed

within three levels of resolution, around a 31�31 patch
allowing our system to handle large displacements between
frames. In such way, we achieve to generate robust places, even
if occlusions occur due to moving objects, as evidenced by the
experimental evaluation in Section 4.3. Furthermore, to pro-
pose a pipeline with low complexity, we avoid the computation
of bidirectional error between points. In addition, as the al-
gorithm progresses over time, points tend to gradually be lost
due to lighting variation or out of plane rotation. At time t,
when every point repeatability expires, the previous visual
sensory stream I(t − n), …, I(t − 3), I(t − 2), I(t − 1), is determined
as a new place:

F I G U R E 2 In order to define places in the proposed pipeline, local keypoints are extracted via the speeded‐up robust features (SURF) [88] detector for the
first image of each place (grey circle). Through the Kanade‐Lucas‐Tomasi (KLT) method [35], points are tracked along the traversed path, while a new place is
determined when each tracked point is lost. The query process begins when a temporal window based on a time constant and query length is satisfied (beige and
light orange area). The latest generated place (light blue area) seeks for similar places along the navigated path in a sequence‐based scheme. Each visited location
(j ) is associated with a score (sj) which indicates the nearest neighbouring trajectory assumption (yellow dashed line). The selected images (green box in S vector)
point out the proper place and an image‐to‐image search is subsequently performed
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\i¼0

i¼n

TPIP
ðt−iÞ

�
�
�
�
�

�
�
�
�
�

≤ 1; ð6Þ

Finally, two important components are retained during
navigation: (i) the place index P and (ii) its length LP. Algo-
rithm 1 summarises this process.

3.2.2 | Image modulation

Next, the pipeline follows the process described in Section
3.1.1 in order to keep the initial SeqSLAM’ characteristics.
Incoming frames are scaled down to χ pixels and are then
normalised. Comparisons between the query, that is, the cur-
rent robot view, and the traversed locations are achieved via
SAD, yielding to generation of distance matrix D. However,
the contrast enhancement step is omitted in the proposed
pipeline since it constitutes an essential component when the
system confronts changing environments [66].

3.2.3 | Place‐to‐place association

When a place is determined, the query procedure starts. With
the aim to perform reliable searching for similar submaps, the
newly generated place PQ should not share any common
semantic information with the recently visited locations. This
is due to the fact that a set of input frames obtained during
a short time interval before It are expected to be similar
without corresponding to actual loop closure events. To pre-
vent our pipeline from detecting such cases, we consider a
temporal window tW, which rejects locations visited just earlier
(IQ
1, …, IQ

1 – tW ). We define this window based on a temporal
constant ψ and the place length LP:

tW ¼ ψ þ LP: ð7Þ

This way, the searching area spans among the first
perceived location I1 and the one determined by the temporal
window IQ

1 − tW as depicted in Figure 2 by the red dashed
line. The latest produced submap seeks into the navigated
path for similar places via a sequence‐based technique. For
each database location Ij, belonging to the searching area, a
difference score s is calculated (Equation (4)) for each ve-
locity assumption (Equation (5)). These scores are based on
the values the trajectory line passes through in travelling from
IQ
1 to IQ

end (Figure 2). The trajectory with the minimum s value
is selected as the representing score sj between the query
place and the one starting from frame Ij. When all database
images have been examined, a score vector is determined
S = {s1, s2, …, sIQ

1 −tW
} and subsequently the minimum value

is selected corresponding to the start location Iid of the
candidate submap. Next, following the nearest neighbour
distance ratio [32] the chosen score is normalised over the
second lowest score (Figure 2) outside of a window range of

equal size with the place length L. The normalised score,
which is the ratio between these scores, is calculated for each
place, while one of the following conditions has to be
satisfied before a submap is recognised as previsited. The
recent score has to be lower than a threshold σ (σ < 0.7 [21])
or the score generated by the last two consecutive submaps
to satisfy a threshold λ. This temporal consistency check is
incorporated in the proposed pipeline since loop closure
detection is a task submitting to a temporal order of the
visited places along the navigation route. That is, if a place is
identified as previsited, then it is highly probable that the
following ones have also gone through. This way, we achieve
to improve the system's performance, while we avoid to lose
actual loop detections due to strict thresholding. Algorithm 2
illustrates this process.

Algorithm 2 Detecting loop places

Input: D: Difference matrix, P: Query place
index, L: Query place length, f:
dataset's frame rate

Output: id: Candidate index, score:
Candidate score

1 tW=40*f+L//temporal window definition
2 for each image Ij in Database do
3 T=computeTrajectoryScores(I, D, P, L)
4 t=min(T)
5 S(I)=t
6 end
7 [id, score1]=min(S)//find the minimum

score and candidate index
8 e=[Iid−L/2, ..., Iid+L/2]//define images

around Iid
9 S(e)=1\ \ reject images in e
10 [~, score2]=min(S)//find the second

minimum score excluding images in e
11 score=score1/score2//compute the

normalised score for Iid

3.2.4 | Local best match

Up to this point, the proposed algorithm is capable of iden-
tifying a pre‐visited place in the navigated map. Finally, an
image‐to‐image correlation is performed between the query
locations and the most similar members of the selected sub-
map in the database. Hence, each place member is associated
with the most similar from the corresponding ones in the
matched database image through the SAD submatrix. Let us
consider that at time t, the system correctly indicates a previ-
ously visited place by matching pair〈IPQ

1 ; I id〉. Our method
defines a group of images which are the only set of database
entries that are going to be evaluated through SAD metrics. In
this paper, we determine this group to be of double the size of
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camera frequency κ, while it is centred around Iid for IPQ
1 ,

that is, I(id − 1) − κ, …, I(id − 1) + κ. However, for the following
image in the query place IPQ

2 this area shifts by 1.

4 | EXPERIMENTAL SETUP

This section provides a description of the experimental pro-
cedure, an expansive evaluation of the proposed pipeline, as
well as comparative results. A total of seven publicly available
datasets are selected for assessing our method. The present
approach is compared in terms of precision–recall metrics [38]
with our previous work, the baseline version of SeqSLAM as
well as other well‐known place recognition solutions. All ex-
periments were performed on an Intel i7‐6700HQ 2.6 GHz
processor with 8 GB of RAM.

4.1 | Datasets

The chosen environments represent outdoor, static and dy-
namic areas containing mostly urban views. In addition, a variety
of different measurement properties are selected, for example,
robot velocity, image resolution and frame rate, in order to
examine the system's adaptation in different conditions. In
Table 1, a summary of each data sequence used is provided.
Three out of seven datasets belong to the KITTI visual
collection [92], representing urban environments that mostly
consist of houses, cars and trees. The perceived visual sensory
information is obtained by a stereo camera systemmounted on a
car, while the recorded data offer considerable loop closure
events, in addition to accurate odometry and high resolution
images. Furthermore, image sequences 00 and 02 are selected in
order to examine the algorithm in long‐term operations, since
the vehicle traverses a distance over 11 km. Lip 6 Outdoor [71]
provides information perceived via a handheld camera

encountering mostly buildings, while a high amount of loop
closures along the navigated path are presented. The particular
dataset is chosen to test the robustness of the system since it
includes variations in the orientation and velocity of the
incoming image stream, as well as low camera resolution and
frame rate. City Centre [19] and New College [93] have been
registered by the vision
system of a robotic platform. They refer to significantly
different operational conditions (e.g. travelled distance, frame
size, acquisition frequency, camera orientation), as presented in
Table 1. However, they both contain a significant amount of
loop closure examples. Note that the acquisition frequency of
New College was resampled to one frame per second, from its
initial 20 Hz rate, due to the robot’s low velocity and high
camera frequency. In Malaga 2009 [94], the Parking 6L (Malaga
6L) data sequence was selected. This environment mostly
contains cars and trees, while the camera information is pro-
vided by means of a vision system mounted on an electric
buggy‐typed vehicle. Plenty examples of revisited locations are

TA B L E 1 Description of the benchmark datasets used for evaluating and testing the proposed system

Dataset Label Description
Camera
position

Image
resolution Imagesnumber

Framesper
second

KITTI 00 [92] Urban environment obtained by means of a stereo camera system
mounted on a forward moving car.

Frontal 1241 � 376 2761 10

KITTI 02 [92] Urban environment obtained by means of a stereo camera system
mounted on a forward moving car.

Frontal 1241 � 376 4551 10

KITTI 05 [92] Urban environment obtained by means of a stereo camera system
mounted on a forward moving car.

Frontal 1241 � 376 4661 10

Lip6 Outdoor [71] Urban environment surrounded by houses recorded via
a handheld camera.

Frontal 240 � 192 600 0.5

City Centre [19] Public roads near the city featuring many dynamic objects such as
traffic and pedestrians recorded via a mobile robotic platform.

Lateral 1024 � 768 1237 7

New College [93] College's ground recorded by means of the vision system of a
robotic platform.

Frontal 512 � 384 52,480 20

Malaga 2009 Parking
6L [94]

University parking recorded by means of the vision system of an
electric buggy‐typed vehicle.

Frontal 1024 � 768 3474 7.5

TA B L E 2 Parameters utilised from the proposed pipeline. Most of the
reported values come from the OpenSeqSLAM implementation, while the
rest are selected by means of the experimentations.

Parameters Symbol Value

Downsampled image size χ 2048

Patch normalisation length N 8

Reduced image size Rx, Ry 32, 64

Minimum velocity Vmin 0.8

Velocity step Vstep 0.1

Maximum velocity Vmax 1.2

Extracted SURF points ξ 500

Search area time constant ψ 40 sec. [78]
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F I G U R E 3 Precision–recall curves of the proposed pipeline evaluating the utilised number of extracted speeded‐up robust features (SURF) [88] ξ against
the previous approach [34] and the baseline solution of SeqSLAM [21]. Experiments are performed on the KITTI 00, 02 and 05 data sequences [92], Lip6 [71]
Outdoor, City Centre [19], New College [93] and Malaga [94] 6L. As the number of detected points increases, our proposed system presents a slight
improvement, reaching recall values of about 77% in case KITTI 00%, 85% in KITTI 02% and 56% in KITTI 05. In Lip6 Outdoor, a score of 50% is achieved,
while a similar performance is observer for the rest datasets. However, the performance falls drastically when feature extraction exceeds the amount of 500,
points as evidenced in KITTI 05 and New College. This is mainly owed to the resulting size of the generated submaps which fail to be matched with the ones in
the traversed trajectory. The proposed system offers higher performance against its predecessors for the rest of the evaluated datasets
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also presented. The incoming visual stream in most sequences is
provided by a stereo camera rig; however, since our approach
aims to an appearance‐based pipeline, only the monocular
capture was used. For City Centre, New College and Malaga 6L,
the right visual stream was selected, while for the KITTI
sequences the left one.

4.2 | Evaluation protocol

In this section, an evaluation protocol for the proposed frame-
work is presented in detail. Precision–recall metrics along with
the ground truth (GT) information are utilised in order to assess
the algorithm performance. Comparisons were performed
based on the parameters in Table 2. Those values remain con-
stant for every tested environment, so as to prove the adapt-
ability of the algorithm. It is notable that the proposed approach
is able to achieve high recall rates for 100% precision than any of
its predecessors on most of the evaluated datasets.

4.2.1 | Parameter discussion

In this section, we briefly discuss the system’s chosen param-
eters. In general, most of the proposed values, for example
downsampled image size χ, image reduced size Rx, Ry, are
defined similarly to the initial version of SeqSLAM [21].
Velocity properties [Vmax, Vmin, Vstep] come from the open
source implementation of OpenSeqSLAM1 [22], while the
normalisation parameter N is defined based on the open-
SeqSLAM2.0 MATLAB toolbox2 [95]. Extracted SURF points
ξ defined via the precision–recall metrics in Figure 3 with the
aim to achieve a framework exhibiting high performance.

4.2.2 | Ground truth

The binary matrix whose rows and columns correspond to
different timestamps indicating the actual loop closure events
occurring in a dataset is defined as ground truth. The presence
of an GTij = 1 element denotes the existence of a loop and
GTij = 0 otherwise. For the KITTI 00, 02, 05 and New College
data sequences, the GTwas manually generated in [79] through
odometry information. In Lip6 Outdoor, this information is
provided by the authors in [71]. Similarly, City Centre contains
its own GT, while Malaga 6L was manually labelled by the
authors in [52].

4.2.3 | Precision–recall metric

A true‐positive detection concerns the correct match as
indicated by the GT. As a correct match is considered any
recognition occurs within a small radius from the query
location. On the contrary, as false‐positive detection is defined
any identification occurs outside of this area, while false‐
negative detections are the ones that the loop closure detec-
tion system ought to have identified but failed to. The
tolerance used for the evaluation is 40 m. Thus, precision is
the ratio between true positives over the total system’s
detections:

Precision¼
True positive

True positiveþ False positive
; ð8Þ

whereas recall is defined as the number of true positives over
the sum of loop closure events contained in GT:

Recall¼
True positive

True positiveþ False negative
: ð9Þ

TA B L E 3 Recall rates at 100% precision: a comparison of the proposed method against our previous work [34], as well as the baseline approach of
SeqSLAM [21]. Bold values indicate the maximum performance per evaluated image sequence. As shown from the obtained results, the proposed pipeline
outperforms the previous versions, while performance improvement is observed as the extracted set of points increases until a certain point. Aiming for an
efficient system which preserves high recall scores for 100% precision, the case of 500 points is indicated.

Dataset
SeqSLAM
[21]

DOSeqSLAM
[34]

Tracking‐
DOSeqSLAM
(100 points)

Tracking‐
DOSeqSLAM
(300 points)

Tracking‐
DOSeqSLAM
(500 points)

Tracking‐
DOSeqSLAM
(700 points)

KITTI [92] 00 77.3 74.8 69.8 72.1 77.6 80.1

KITTI [92] 02 68.2 58.9 54.6 83.6 61.1 61.1

KITTI [92] 05 51.5 56.7 56.7 38.4 38.2 –

Lip6 [71] Outdoor 21.2 22.5 36.8 39.8 40.9 40.9

Oxford [19] City Centre 38.9 34.9 50.4 50.4 47.1 59.4

Oxford [93] New College 29.3 16.8 39.9 40.0 40.0 16.3

Malaga [94] Parking 6L 21.5 23.3 37.2 38.4 42.0 38.1

1
The OpenSeqSLAM algorithm can be found online in: https://openslam.org/
openseqslam.html
2
The OpenSeqSLAM2.0 toolbox can be found online in: https://github.com/kadn/
OpenSeqSLAM2.0
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4.3 | Performance evaluation

By altering the loop closure decision parameter λ, precision–
recall curves are monitored for different cases of image
keypoints detection (ξ = 100, 300, 500, 700) in Figure 3. The
system’s performance for the proposed dynamic place genera-
tion is evaluated and compared with the previous version of
DOSeqSLAM, as well as the baseline approach of SeqSLAM.
The latter is based on the opensource implementation of
OpenSeqSLAM, while configured through OpenSeqSLAM2.0
toolbox [95]. The selected parameters remained constant over all
datasets. However, aiming to a fair performance evaluation, the
contrast enhancement step was avoided for both previous
methods of SeqSLAM and DOSeqSLAM. Furthermore, a 40 s
temporal window, similar to the proposed method, was applied

to reject early visited locations. For an easier understanding of
the curves, best results at 100%of precision are also presented in
Table 3. Our first remark is that the area under the curve of
Tracking‐DOSeqSLAM is higher than the corresponding curves
for its predecessors, outperforming them in most of the evalu-
ated datasets. As can be observed, DOSeqSLAM is usually able
to obtain similar recall at perfect precision as SeqSLAM, except
for New College, where the result drops to a rate of 17%.
According to our experiments, the proposed pipeline shows
especially high performance for Lip6 Outdoor, City Centre and
Malaga 6L, for each case of the extracted keypoints, compared to
the other solutions. Furthermore, the maximum scores for the
other datasets are also high, while a high improvement is
observed in KITTI 02 for a number of 300 keypoints, reaching a
score of about 85% for perfect precision.

F I G U R E 4 Submaps generated from the proposed dynamic segmentation of the incoming image stream using the parameters defined in Table 2. Images
exhibiting time and content proximity are labelled by the same colour. From left to right, submaps are illustrated for KITTI data sequences [92] 00, 02, 05, City
Centre [19], New College [93] and Malaga 6L [94]. 47, 52, 22, 151, 119 and 43 places are generated, respectively. As can be seen in most of the cases, the images
are tagged with the same colour when the robot traverses a route which presents similar visual content. This is especially highlighted in the KITTI datasets,
where the camera measurements arrive from a forward moving car, in contract to City Centre’s lateral camera orientation

F I G U R E 5 Loop closures detected by the proposed pipeline for each dataset trajectory. From left to right: KITTI [92] 00, 02, 05, City Centre [19], New
College [93] and Malaga 6L [94]. Red dots indicate that the system closes a loop with another image in the database

Image 3547

Image 3557

Image 3567

Image 3563

Image 3573

Image 3583

F I G U R E 6 An illustrative example of our place generation technique based on point tracking. The respective camera poses corresponding to the same
group of images are marked in magenta. A set of speeded‐up robust features (SURF) [88] is detected in the first location of a newly formulated place (image
3547) and subsequently tracked along the trajectory. At time t (image 3583), the incoming visual sensory stream I(t − n), …, I(2), I(1), I(t), is finalised as a new
submap since all the initial points cease to exist from the tracker
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Nevertheless, counter to most data sequences, where the
increased keypoint extraction improves the performance, the
evaluation of the proposed method in KITTI 05 and New
College shows an instant drop in the recall rate. In the latter
case, we observe a lower recall score, while in the former one
our method does not recognise any previsited location. This is
owed to the fact that places which are generated under those
conditions fail to be matched with the query ones due to their
extreme size. By considering the results presented in Table 3,
the parameter ξ is selected at 500 in order to ensure a system
that achieves high recall scores for 100% precision. Figure 4
shows the submaps formulated by Tracking‐DOSeqSLAM for
each dataset, while Figure 5 presents the detected loops for
100% precision. For each submap, a random colour has been
assigned to highlight a distinct place across the traversed tra-
jectory, and thus, every location associated to the same submap
is labelled by the same colour. An example containing images
from the same place defined by our algorithm based on point
tracking is illustrated in Figure 6. Evidently, as soon as the
robot turns to a route that represents a visually consistent area,
the corresponding images that exhibit time and content

proximity are aggregated in the same group (place). Finally, in
Figure 7, some accurately detected locations using the selected
parameterisation are shown.
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Image 640

Image 2068

Image 410

Image 949

Image 1995

Image 4568

F I G U R E 7 Some example images that are correctly recognised by our pipeline as loop closure events. The query frame is the image recorded by the vehicle
at time t, whereas the matched frame is the corresponding one identified among the members of the chosen place. From left to right: Lip6 Outdoor [71], New
College [93], City Centre [19] and KITTI 02 [92]

TA B L E 4 Processing time per image
(ms/query) of Tracking‐DOSeqSLAM, as well
as of its previous version [34] and the baseline
approach [21], for the KITTI 00 data
sequence.It is notable that the proposed
pipeline requires less time due to its efficient
matching process which is based on the image
aggregation from the generated places.

Average time (ms)

SeqSLAM DOSeqSLAM Tracking‐DOSeqSLAM

SURF detection – 42.67 0.01

SURF description – 27.96 –

Points tracking – – 4.27

Feature matching – 6.75 –

Resize 2.43 2.43 2.43

Patch normalisation 5.77 5.77 5.77

Image comparison (SAD) 42.90 42.90 42.90

Matching 67.66 64.18 0.71

Sum 118.76 192.66 56.20

TA B L E 5 Average computational times (T ) and number of generated
places for the proposed pipeline and its predecessors for all datasets As can
be observed, the improved version achieves substantially lower timings for
each evaluated case, outperforming the rest of the solutions

SeqSLAM DOSeqSLAM
Tracking‐
DOSeqSLAM

Places T(ms) Places T(ms) Places T(ms)

KITTI 00 4554 118.76 155 192.66 47 56.20

KITTI 02 4661 123.04 378 209.02 52 58.99

KITTI 05 2761 58.62 192 132.90 22 38.66

Lip 6 Outdoor 600 22.13 177 37.56 51 20.87

City Centre 1237 26.96 211 71.41 151 25.47

New College 2624 55.51 323 94,70 119 36.28

Malaga 6L 3474 81.73 162 186.22 43 48.97
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4.4 | System’s response

To analyse the computational complexity of the proposed
method, we ran each framework that is, SeqSLAM, DOS-
eqSLAM and Tracking‐DOSeqSLAM on the KITTI 00
image sequence, which is the longest among the evaluated
ones exhibiting a remarkable amount of loop closures. In
Table 4, an extensive assessment of the corresponding
response time per image is presented. The detection and
description of SURF keypoints constitutes the feature
extraction process presented in the evolution methods of
SeqSLAM. Feature tracking corresponds to the time needed
by the KLT technique, while feature matching the time for
DOSeqSLAM to segment the incoming visual stream. Image
resize and patch normalisation declare the processing steps
of SeqSLAM, whilst image comparison constitutes the time
for the SAD method. Lastly, matching denotes the time
required for each method to search for similar places in the
database. The results show that we can reliably detect loops,
while maintaining low execution times. We observe that
every involved step is notably fast except for the compari-
son process which exhibits the highest execution due to the
utilised metric technique. The time for keypoint detection is

negligible since we search for new SURF elements at the
beginning of a new place, while the timing for point
tracking is also low.

4.5 | Comparative results

This section compares the proposed pipeline with other well‐
known state‐of‐the‐art algorithms. Firstly, since Tracking‐
DOSeqSLAM is an evolution of our previous work [34] and
SeqSLAM [21] as well, we present in Table 5 the final amount
of generated places and the average processing time for each
method. In this regard, we aim to show that the proposed
modifications result in an improvement in terms of processing
time and computational complexity. As the proposed method
follows the baseline approach regarding the main processing
steps (e.g., image downsample, comparison technique, etc.), the
computational complexity mainly depends on the number of
constructed places. As highlighted in Table 5, our system
achieves the generation of an amount of places at least one
order of magnitude less than SeqSLAM, while a significant
decrease is also presented against our previous one. This
results in notably fast associations between similar submaps

TA B L E 6 Recall scores for 100% precision: comparison of the proposed place recognition pipeline against other state‐of‐the‐art methods

FAB‐MAP
[38]

DBoW2
[40]

SeqSLAM
[21]

DOSeqSLAM
[34]

BoW‐SeqSLAM
[26]

FILD
[52]

Kazmi and Mertsching
[81] Proposed

Dataset R (%) R (%) R (%) R (%) R (%) R (%) R (%) R (%)

KITTI 00 61.2 72.43 77.3 74.8 89.0 91.2 90.3 77.6

KITTI 02 44.3 68.22 68.2 58.9 72.2 65.1 79.4 61.1

KITTI 05 48.5 51.97 51.5 56.7 91.0 85.1 81.4 38.2

Lip6 Outdoor N/A N/A 21.2 22.5 40.0 N/A N/A 40.9

Oxford City Centre 40.1 30.6 38.9 34.9 38.9 66.4 75.5 47.1

Oxford New College 52.6 55.9 29.3 16.8 85.9 76.7 51.0 40.0

Malaga Parking 6L 21.8 31.0 21.5 23.3 39.1 56.0 50.9 42.0

TA B L E 7 Average computational times (T ) on the representative datasets for the proposed pipeline and the baselines The Tracking‐DOSeqSLAM achieves
substantially lower timings for each evaluated case.

Method

Central processing
unit

Graphics processing
unit Memory

KITTI 00
[92]

Oxford city centre
[19]

Malaga parking 6L
[94]

CPU GPU RAM T (ms) T (ms) T (ms)

FAB‐MAP [38] Intel i7 3.4 GHz ‐ 16 GB 388.1 259.7 526.6

DBoW2 [40] Intel Xeon 2.6 GHz ‐ N/A 111.0 27.5 42.5

SeqSLAM [21] Intel i7 2.6 GHz ‐ 8 GB 118.7 25.9 81.7

DOSeqSLAM [34] Intel i7 2.6 GHz ‐ 8 GB 192.6 71.4 186.2

FILD [52] Intel Xeon 2.6 GHz Nvidia P40 N/A 92.6 40.2 68.1

Kazmi and Mertsching
[81]

Intel i7 3.4 GHz ‐ 16 GB 96.9 95.4 95.4

Ours Intel i7 2.6 GHz ‐ 8 GB 56.2 25.4 48.9
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permitting our method to process in lessen time in contrast to
the other previous versions, while presenting high recall scores
for perfect precision. Furthermore, the impact in terms of
recall is high and outperforming its predecessors in most of the
tested datasets.

In addition, for the sake of completeness, we show the
results of other modern methods with the aim to help
the reader to identify the place of the proposed pipeline within
the state‐of‐the‐art. In Table 6, we compare our approach with
well‐known works in place recognition, namely FAB‐MAP
[19], DBoW2 [40], BoW‐SeqSLAM [26], FILD [52] and Kazmi
and Mertsching [81]. The maximum recall scores for perfect
precision for each approach are based on the figures reported
in the original papers. The term N/A denotes that the corre-
sponding information is not available from any cited source.
Furthermore, for the case of FAB‐MAP 2.0 [38] and DBoW2
[40] along with FILD [52] where no actual measurements are
provided regarding the used datasets, the presented results are
obtained from the setup described in [55, 81], respectively. Most
of the approaches (e.g. FAB‐MAP, DBoW2, BoW‐SeqSLAM)
are based on pretrained visual vocabularies, while FILD uses
deep features in order to represent the incoming sensory
measurement.

Albeit the proposed system achieves high recall rates in
every tested dataset, the difficulty to present higher scores
against recent loop closure pipelines which utilise more
sophisticated image processing techniques for the location
representation is evident. This is owed to the inability of
SAD to quantify the obtained frames visual properties.
However, our key purpose is to demonstrate the achieved
performance gain, over the original SeqSLAM versions,
through a refined trajectory segmentation, while operating
with the lowest possible complexity and avoiding any
training procedure. Thus, a direct comparison of Tracking‐
DOSeqSLAM with the rest of the approaches is not
informative; it is only included here as a performance in-
dicator to better interpret the possible improvement mar-
gins. On the support of thereof, in Table 7, we compare the
average execution time of the proposed framework with the
baselines on three representative datasets. The time for each
approach is based on the reported values presented in the
aforementioned sources. It is noteworthy that the proposed
pipeline can achieve the lowest timings in every tested
dataset.

In KITTI data sequences, the proposed algorithm per-
forms unfavourably against the other solutions. However,
despite FILD achieving the highest recall rates, this method is
computationally intensive since a graphics processing unit was
used to extract deep features making it unsuitable for mobile
robotic platforms. Moreover, SURF are used for verifying
candidate pairs though the RANSAC technique, which is well
known for its high complexity and ability to reject outliers. In a
similar manner, BoW‐SeqSLAM and Kazmi and Mertsching
exploit the epipolar geometry between the chosen images to
further enhance the system's performance. When comparing
the Lip6 Outdoor, the proposed pipeline exhibits over 40% of
recall results outperforming the other methods. In the case of

City Centre, New College and Malaga 6L, our algorithm drops,
yet it retains better recall scores than its predecessors, while
keeping the lowest complexity.

5 | CONCLUSIONS

The article in hand extends our previous work [34], pre-
senting an appearance‐ and sequence‐based loop closure
detection method, which makes use of KLT tracking in
order to efficiently fragment the robot’s map into submaps
defining dynamic places, dubbed as Tracking‐DOSeqSLAM3.
Following its ancestor’s image representation and similarity
comparison processes, the proposed pipeline highlights the
system’s ability to recognise previsited places using almost
two orders of magnitude less operations. This way an effi-
cient framework for autonomous robots with restricted
computational resources is achieved. When the proper place
is selected, an image‐to‐image search in the SAD domain
determines the appropriate location. The system retains its
ability to perform robustly against different operational
conditions and works online without any training procedure.
Compared with the initial version, the proposed approach
achieves high recall rates for perfect precision in the most
of the tested publicly available datasets, while still retaining a
real‐time performance.
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