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Probabilistic Appearance-Based Place Recognition
Through Bag of Tracked Words

Konstantinos A. Tsintotas , Loukas Bampis , and Antonios Gasteratos

Abstract—A key feature in robotics applications is to recognize
whether the current environment observation corresponds to a
previously visited location. Should the place be recognized by the
robot, a Loop Closure Detection (LCD) has occurred. The letter
in hand deploys a novel low complexity LCD method based on
the representation of the route by unique visual features (VFs).
Each of these VFs, referred to as “Tracked Word” (TW), is gener-
ated on-line through a tracking technique coupled with a guided-
feature-detection mechanism and belongs to a group of succes-
sive images. During the robot’s navigation, new TWs are added
to the database forming a bag of tracked words. When query-
ing the database seeking for loop closures, the new local-feature-
descriptors are associated with the nearest neighboring TWs in
the map casting votes to the corresponding instances. The system
relies on a probabilistic method to select the most suitable loop
closing pair, based on the number of votes each location polls. The
proposed system depends solely on the appearance information of
the scenes on the trajectory, without requiring any pre-training
phase. The evaluation of the method is administered via a variety
of tests with several community datasets, thus proving its capability
of achieving high recall rates for perfect precision.

Index Terms—Localization, mapping, visual-based navigation.

I. INTRODUCTION

AN APPROPRIATE representation on the environment is
essential for a robot to be able to perform elaborated func-

tions, such as path and task planning. Therefore, robotics schol-
ars have put a tremendous effort in methods, approaches and
techniques to map the world by means of several exterocep-
tive sensors [1]–[3]. In many cases, it is the scenario with
which the robot would deal, that drives the map representation.
Within the context of Simultaneous Localization and Mapping
(SLAM) [1] while the robot navigates through the field a map
of the surroundings is constructed; at the same time its posi-
tion in the world is estimated. However, given the noisy sensor
measurements, modeling inaccuracies and errors due to field ab-
normalities, even the most accurate pose estimators are prone to
faults. Loop Closure Detection (LCD), i.e., the event in which
a robot returns to a previously visited location and recalls it,
constitutes a core component of SLAM systems and enables in-
cremental pose drift to be rectified using visual information. The
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detection of numerous fault-free loop closure events constitutes
a prime goal of modern autonomous systems.

Due to their low cost, camera sensors have become the key
perception device in most recent robotic platforms. Place recog-
nition approaches hinging on appearance aim to detect pre-
visited locations only by means of visual sensory information
[4]. As the camera stream enters the pipeline, the perceived in-
stances are processed to produce a more compact representation.
In the typical case, this process is consisted of two main pro-
cedures, viz., keypoint detection and description [5]–[8]. When
a query image (or the current robot view) is captured, compar-
isons are performed with all the frames in the sequence, seeking
for the most suitable loop closing pairs. Towards this end, vot-
ing schemes are implemented [9]–[12] to highlight database
instances with the most common keypoint features. Other LCD
pipelines [13]–[17], tackle the place recognition task based on
the Bag of Words (BoW) model [18]. Quantizing the descrip-
tors’ space yields to Visual Words (VWs) and images repre-
sented by VW histograms. Thus, loop closure events are indi-
cated by comparing similarities between such representations.
The BoW approaches can offer high performance as well as
computational frequency. Nevertheless, their success highly de-
pends on the quality of the Visual Vocabulary (VV) and, in
turn, the data the latter was trained with. In order to avoid
a performance failure due to the generic construction of VV,
incremental dictionaries which are built on-line are adopted
[19]–[22].

This letter presents a straightforward probabilistic
appearance-based LCD framework which relies on an image-
to-map voting scheme based on an incremental version of BoW
methods avoiding any pre-trained technique. Feature track-
ing is performed using a guided-feature-detection technique
and Kanade-Lucas-Tomasi (KLT) point tracker [23]. For each
tracked feature, a Tracked Word (TW) is generated by aver-
aging the instances of the corresponding descriptors. TWs are
assigned to the map representing specific locations along the tra-
jectory, while a Bag of Tracked Words (BoTW) is constructed
during the navigation. Working with scale and rotation invariant
local-features provides a built-in robustness towards view-point
and velocity variations. At query time, local-feature-descriptors
vote using a k-NN technique, while a binomial Probability Den-
sity Function (PDF) is adapted as a belief generator among the
candidate loop closing pairs. The proposed method is evaluated
on six different environments while compared against state-of-
the-art methods.

The main contributions of this letter are:
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� A fully probabilistic scene recognition pipeline with low
computational complexity capable of detecting loop clo-
sure events through the distributed local-feature votes.

� An on-line BoTW database generation assigned to the tra-
versed map, consisting of unique TWs.

� An experimental parameter estimation scheme based on
two criteria:
� The number of tracked features among consecutive

frames, indicated as the parameter ν.
� The number of required tracked instances in order for

a feature to be converted into a TW, pointed out as the
parameter ρ.

The remainder of this work is structured as follows. In
Section II, we present a review of related work on appearance-
based LCD approaches. Section III describes in detail the
proposed implementation. Our method’s evaluation and experi-
mental results are apposed in Section IV, while the last Section
is devoted to conclusion and future work.

II. RELATED WORK

The concept of BoW has originally been applied to text re-
trieval [24]. In robot navigational models, such frameworks can
be distinguished into two categories according to their VV con-
struction procedure. Methods that utilize a pre-trained vocab-
ulary are placed in the first category [13]–[16], whereas algo-
rithms which build their VV on the fly belong to the second
one [3], [19], [20], [21], [22]. A probabilistic appearance-based
pipeline, which uses a pre-trained VV of SIFT [6] descriptors is
proposed in [13]. This approach additionally includes a Chow
Liu tree to learn the co-occurrence probabilities among VWs
[25]. Similarly, a binary VV coupled with geometrical and tem-
poral checks can turn fault detections down [14], [15], while
a binary feature-based tree is adopted in [26] to enhance the
computational speed.

All these frameworks search the database for image associa-
tions in a greedy manner. On the contrary, the work presented in
[16] adopted a probabilistic pipeline based on location models
which are constructed along the map through features covisi-
bility. During a query event, candidate loop closing places are
retrieved from the map and evaluated through a Bayesian filter.
Another set of LCD approaches with pre-trained VV utilize the
visual information of image sequences. A representative exam-
ple of such techniques can be found in [17], where sequences of
instances are represented by a VW histogram and the candidate
matches are enhanced through a quantitative interpretation of
temporal consistency.

On the other hand, Angeli et al. [19] propose an incremen-
tal BoW algorithm for scene recognition. During navigation,
two parallel VVs (one representing image-descriptors and the
other color histograms) are generated and combined. Loop
closing pairs are indicated via a Bayesian filter and validated
by epipolar geometry constraints. In [3], a scalable and auto-
matic BoW technique is presented using agglomerative clus-
tering. Furthermore, Khan and Wollherr [20], propose a binary
BoW method where VWs are incrementally generated through
feature-tracking. Coupled with a likelihood function and tem-

poral consistency checks, pre-visited locations are recognized
in an on-line and real-time manner. An incremental visual dic-
tionary built on a hierarchical structure of VWs is proposed in
[22]. In [21], binary codewords with perspective invariance to
the camera’s motion are learned on-line from matched feature-
pairs along consecutive instances. Integrated in an incremental
BoW system, this technique provides reliable loop closure hy-
potheses.

Recent works [9]–[12] tackle the LCD task through voting
techniques directly on descriptors’ space to potentially achieve
more accurate results. In [9], a k-d tree is built from projected
BRISK descriptors; by querying the nearest neighbor of each
descriptor, loop closures are identified by means of statistical
tests. Cieslewski et al. [10] search a neighborhood using a vo-
cabulary tree to retrieve the appropriate match, while the voting
score is normalized relatively to the observed landmarks. The
authors in [11] propose a probabilistic approach to interpret
the voting score. Loop closure events are computed by rely-
ing on the aggregated descriptor votes, while they verified by
temporal and geometrical checks. Likewise, in our latest work
[12] votes are distributed to places dynamically defined on the
trajectory, whereas a probabilistic score indicates pre-visited
locations.

Other contemporary approaches [27]–[29], make use of Con-
volutional Neural Networks (CNNs) to solve the place recog-
nition problem. Specific convolutional layers behave as image-
descriptors, whereas comparisons are performed among them.
Despite their impressive results, these approaches are known for
their excess demand in computational resources [30], thus re-
maining unsuitable for real-time applications in mobile robotics.

The majority of the aforementioned approaches in
appearance-based place recognition rely on comparisons of a
single or a sequence of images, represented by VW histograms.
Yet, the proposed framework adapts an on-line, image-to-map
voting scheme which relies on tracking features among consec-
utive instances, similarly to [20] and [31]. However, our method
is fundamentally different due to the fact that the incrementally-
constructed BoTW elements are unique. More specifically, each
element is originated from a different local-feature along the tra-
jectory, while a comparison regarding their similarity is avoided,
either between local-features in the same camera measurement
or the already constructed TWs. In such a way, a detailed rep-
resentation of the traversed route is achieved. Following this
principle, the proposed voting procedure is more robust, result-
ing into an accurate localization outcome.

III. METHODOLOGY

In order to carry out visual place recognition a pipeline of
operations is implemented as outlined in Fig. 1. The workflow
is comprised of two parts: i) Building the BoTW database, and
ii) Querying the Database. Keypoint extraction, point tracking,
guided-feature-detection, TW generation and BoTW are found
in the first part, whereas voting scheme, probabilistic belief
generator and geometrical check belong to the second one. The
following sections describe the individual parts of the algorithm
in detail.
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Fig. 1. An overview of the proposed pipeline. Points from the previous image
It−1 are tracked into the current frame It , by means of Kanade-Lucas-Tomasi
(KLT) tracker [23]. Subsequently, tracked points are assigned to corresponding
SURF [5] extracted in It by a guided-feature-detection mechanism. Points
which lose their track during navigation are converted into tracked words and
assigned to the corresponding locations along the map. When a query image
IQ arrives, its descriptors vote into the Bag of Tracked Words, according to a
nearest-neighbor descriptor method. A binomial Probability Density Function
(PDF), utilized as belief generator, indicates loop closing pairs. The red locations
on the PDF are identified as candidate loop closure events since the probabilistic
score threshold δ is satisfied. Finally, a geometrical verification step strengthens
the results.

A. Building the BoTW Database

1) Point Tracking: Point tracking across consecutive images
is achieved by a set of ν SURF Points (SP = {sp1 , sp2 ,... spν })
from the previous image It−1 , fed into a KLT point tracker
along with the currently perceived camera measurement It . Ad-
ditionally, we retain the corresponding set of description vectors
(Dt−1 = {d1

t−1 , d2
t−1 ,... dν

t−1}) which are meant for the next step.
Subsequently, the set of local keypoints SPt in It is extracted
and described producing the descriptors’ set Dt , with a view to
be matched with the ones from the tracker. Aiming to a reli-
able tracking system, points in It are browsed within 3 levels
of resolution, around a 31× 31 neighborhood, with a maximum
bidirectional error of 3 pixels.

2) Guided Feature Detection: In order to produce unique
TWs for map representation, we perform descriptor matching
among different frames. The BoTW module constitutes the core
component in our system, thus point descriptors need to be suf-
ficiently accurate for a robust TW estimation and, consequently,
the success of the method. A guided-feature-detection mech-
anism is deployed, to avoid the tendency of Tracked Points
(TP = {tp1 , tp2 ,... tpν }) to drift along the trajectory. A k-NN
(k = 1) search is performed on the points’ coordinate space be-
tween the TPt elements and the ones extracted by SURF (SPt).
For each tracked point tpt , the nearest spN N

t (spN N
t ∈ SPt) is

detected and evaluated by measuring the �2 distance between

Fig. 2. Guided-Feature-Detection: Kanade-Lucas-Tomasi (KLT) tracker [23]
computes the coordinates of the Tracked Points (TP = {tp1 , tp2 ,... tpν }) from
the previous It−1 to the current image It , illustrated by green (+) and red
(+) crosses, respectively. Subsequently, they are matched with their nearest
neighboring SURF point (spN N

t ∈ SPt ), depicted by a blue cross (+), as per
their points’ coordinates and descriptors’ distance.

its descriptor dN N
t and the one (dt−1) corresponding to spt−1

in the previous image It−1 (Fig. 2). A point is accepted and its
descriptor is considered to be a good match, providing that the
following conditions are satisfied: (a) The Euclidean distance
between tpt and its corresponding spN N

t is lower than α:

�2(tpt , spN N
t ) < α (1)

and (b) the descriptors’ absolute difference is lower than β:

�1(dt−1 − dt) < β (2)

During the guided-feature-detection, matched local-features
are removed from the procedure, reducing the risk of repeat-
able identification between points. In the course of the robot’s
navigation, when a tracked feature ceases to exist (regardless
of whether it forms a TW or not), it is replaced by a new one
detected in It . Similarly, in cases where the system is unable
to derive enough visual information (e.g. white plain or blurred
images), the low-informative frame is skipped and the process
keeps on with a new It+1 .

3) Bag of Tracked Words: The final step of the BoTW
database procedure is the descriptors’ merging, so as to produce
the TWs. When the tracking of a certain point is discontinued,
its total length τ , measured in consecutive frames, determines
whether a new word should be created (τ > ρ). From the average
of the tracked descriptors the representative TW is computed:

TW[i] =
1
τ

τ∑

j=1

dj [i] (3)

where dj [i] denotes the i-th (SURF: i ∈ [1, 64]) dimension of
the j-th (j ∈ [1, τ ]) descriptor-vector. In addition, two impor-
tant components are retained in the BoTW: i) the TW-length for
each element, and ii) an invert indexing list for fast loop clo-
sure identification. Last, due to the nature of our system’s belief
generation mechanism, each TW is independent from any scor-
ing technique, such as the “term frequency-inverse document
frequency” (tf-idf) [18]. This is due to the fact that there is no
straightforward approach to determine whether a specific word



1740 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 2, APRIL 2019

should be more defining than another since each TW corre-
sponds to a different entity of the map.

B. Querying the Database

1) Map Voting: Regular LCD pipelines make use of the
BoW model, in which images are compared through VW
histograms. Yet, the proposed system adopts a voting scheme.
At query time, the most recent instance IQ directly projects
its descriptors, formulated by guided-feature-detection, to
the BoTW database via nearest neighbor search in a greedy
manner. Votes are distributed into the map, whilst a database
vote counter for each image increases in agreement with the
contributing TWs. The vote density xl(t) of each database
entry l plays a primary role in the loop closure belief generator.
To avoid erroneous detections originated by the robot’s varying
velocity (e.g. when the platform remains still), our method
seeks for database matches obtained earlier than frame Iw . In
this case, w is computed by w = t − 2c, where c corresponds
to the length of the longest active point track. This way the
system is endowed with the certainty that It does not share any
common feature with the database, while a commonly used
heuristic timing threshold is avoided.

2) Probabilistic Belief Generator: To avoid the naive ap-
proach of applying a heuristic threshold over xl(t) for detecting
potential loop closing candidates, a binomial PDF is adopted
as a dynamic belief generator [11]. The method examines the
rareness of an event and relies on the assumption that every
time the robot traverses a location unseen hitherto, votes should
be randomly distributed to TWs on the map, meaning that each
location’s vote density should be low. Ergo, the number of aggre-
gated votes for each database entry should obey a binomial dis-
tribution (see eq. (4)). Besides, when confronting a pre-visited
environment the corresponding votes casted increase, which
corresponds to a high vote density and represents a probabilistic
event of low expectation, as depicted in Fig. 1. As a consequence,
each time an increased vote score is observed, the system marks
a candidate loop closure:

Xl(t) ∼ Bin(n, p), n = N(t), p =
λi

Λ(t)
(4)

where Xl(t) represents the random variable for the number of
accumulated votes of database location l at time t, N denotes
the multitude of query’s TP (number of points after the guided-
feature-detection), λ is the number of TWs members in l, and Λ
corresponds to the size of the BoTW list (without the rejected
locations).

The binomial expected value on each location has to satisfy
a loop closure threshold δ, so as to be accepted:

Pr(Xl(t) = xl(t)) < δ < 1 (5)

while to avoid cases where a location accumulates unexpectedly
few votes due to extreme dissimilarities, the following condition
should hold:

xl(t) > E[Xl(t)] (6)

Fig. 3. Similarity matrices of KITTI 00 [32] dataset based on images’ vote
aggregation (left) and probability scores (right). Binomial probability shows to
perform favorably, providing the system with an important intuition about pre-
visited locations. For illustration purposes, each score in probabilistic matrix is
plotted through -log10(P r(Xl (t) = xl (t)).

Fig. 4. Selecting a loop closing location: at query time, image-descriptors
distribute votes to database locations where the nearest neighboring Tracked
Words (TWs) are originated. Colored sticks indicate the corresponding votes
casted by different TWs. Although locations which satisfy the probability func-
tion condition δ exist, the highlighted one is selected as the proper candidate
owed to the fact that it accumulates the majority of the votes.

Through the usage of binomial PDF the system is capable of
avoiding cases where the number of votes is not sufficient e.g.,
due to poor visual imagery information. Its robustness to identify
loop closure candidates is highlighted in Fig. 3.

However, since the distribution of votes affects a group of con-
secutive images, which should be able to satisfy the aforemen-
tioned conditions, the proposed method selects the one polling
the largest number of votes (see Fig. 4).

3) Geometric Check: The aforementioned loop closing can-
didates are further evaluated through a geometrical check in or-
der to ensure a robust place recognition system. Similarly to [14],
the fundamental matrix is estimated by means of RANSAC,
which is required to be supported by at least φ correspondences
between the query IQ and the matched image IM . If the es-
timation fails, the selected instance is ignored, preventing the
system from false detections. This straightforward but compu-
tational costly implementation relies on an exhaustive feature
matching search on the chosen pair. Having said that, we exploit
the extracted BoTW database to optimize this procedure. More
specifically, when a new TW is added into the BoTW a list of
its descriptors is stored coupled with an image index. Then, in
order to obtain correspondences between IQ and IM , we per-
form comparisons only between the query’s tracked features
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TABLE I
DETAILS ABOUT USED DATASETS

and the ones associated with the voted TWs of the matched in-
stance. This technique accelerates the computations leading to
a reduced execution time.

IV. MEASURING THE PERFORMANCE

A. Experimental Protocol

A total of six publicly-available image sequences were uti-
lized to validate the proposed system. With the aim to adjust
the parameters of the algorithm, three of these sequences were
selected. The chosen environments represent outdoor and dy-
namic urban areas containing mostly street views. The esti-
mated parameters are assessed on the three remaining datasets,
which consist of an indoor industrial area, an outdoor university
campus parking lot and a college’s ground. Table I provides
a summary of each sequence used. The presented approach is
compared against state-of-the-art methods with incremental vo-
cabulary, namely Angeli et al. [19], IBuILD [20], Zhang et al.
[21], Gehrig et al. [11], iBoW-LCD [22], as well as our previous
work [12]. For the sake of competitiveness we also compare the
proposed method with approaches based on a pre-trained vocab-
ulary, specifically FAB-MAP 2.0 [13], DBoW2 [14], DBoW2-
ORB [15], PREVIeW [17]. All experiments were performed on
an Intel i7-6700HQ 2.6 GHz processor with 8 GB RAM.

1) Evaluation Sequences: Two out of three image sequences
belong to KITTI vision suite collection [32] while the third one
to the Lip6 Outdoor sequence (L6O) [19]. Regarding KITTI
datasets, the incoming visual stream is obtained by means of
a stereo camera system mounted on a forward moving car. Se-
quences 00 (K00) and 05 (K05) have been selected since they
provide meaningful loop closure examples, accurate odometry
information and long-term operational conditions. Aiming to
an appearance-based place recognition framework, only the left
image stream was used for this evaluation. In L6O, visual infor-
mation is provided by a hand-held camera encountering plenty
of loop closures along the traversed route. The particular dataset
is chosen for it includes both low camera resolution and frame-
rate, making it essential for assessing the tracking mechanism
of the proposed method.

2) Test Sequences: The EuRoC Machine Hall 05 (EuR5) se-
quence of the EuRoC MAV dataset [34] is selected and utilized
to test the robustness of the system, as it provides strong vari-
ations in velocity along the trajectory and relevant examples of
loop closure events with changes in illumination. Visual sen-
sory information is provided by cameras mounted on a Micro
Aerial Vehicle (MAV) with high acquisition frame-rate. Malaga
2009 Parking 6L (MLG) [33] and New College (NC) [35] have
been recorded by means of the vision system of an electric
buggy-typed vehicle and a robotic platform, respectively. They
are incorporated since the characteristics of the corresponding
recorded data are different by means of their evaluation datasets
and contain a significant amount of loop closure examples. The
incoming visual stream in every testing sequence is a stereo
one, though we only utilized just the monocular sequences in
our assessment. The frames of NC were resampled to 1 Hz, due
to the robot’s low velocity and high camera frequency.

B. Performance Evaluation

To evaluate the system’s performance against the selected
datasets, the precision-recall metrics are displayed. Precision
can be defined by the number of correct loop closing matches –
true-positive detections– over the total method’s identifications
–true-positive plus false-positive detections–, whereas recall is
the ratio of true-positive over the sum of true-positive and false-
negative detections. A correct match is considered to be any
identification which occurs within a small radius from the query
location, while a false-positive detection lies outside this area.
False-negative detections represent the locations that ought to
have been recognized, but the method failed to. The tolerance
used for the evaluation is set to 10 neighboring locations and
corresponds to a distance that allows the accurate estimation of
fundamental matrix with RANSAC. The aim of a loop closure
algorithm is to achieve the highest recall score possible for
flawless precision. Ground Truth (GT) information is used to
determine whether an image pair corresponds to a loop closure.
GT is shaped in the form of a binary matrix whose rows and
columns represent images with different time indices, while its
elements are set to 1 in the case that a loop closure occurs
(GTij = true) and 0 otherwise (GTij = false). For the MGL,
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Fig. 5. Precision-recall curves evaluating the number of maximum tracked features against the minimum required length for a Tracked Word (TW) generation,
tested on the KITTI [32] sequences, 00 (top), 05 (middle) and Lip6 Outdoor [19] (bottom) for the proposed method. As the number of Tracked Points (TP) grows,
the performance is increased (recall rates for 100% precision) until it settles in the cases of 200 and 250. On the contrary, as the minimum allowed TW-length
increases, the system’s performance constantly decreases.

TABLE II
METHOD’S PARAMETERS

EuR5, NC and KITTI sequences, GT was labeled manually in
[12] based on the dataset odometry information. The evaluation
of L6O is established through the GT data [19].

As the loop closure threshold δ is varied, we monitor the
precision-recall scores obtained for different cases of maxi-
mum retained tracked features (ν = {100, 150, 200, 250}). In
addition, we assessed the TW’s minimum allowed length (ρ =
{5, 8, 10, 12}) for the achieved performance. In support thereof
we observe that the recall rate in Fig. 5 increases with the num-
ber of TP, reaching more than 90% in KITTI sequences and
almost 70% in L6O, while the precision remains at 100%. In
L6O, where the acquisition rate is too low (1Hz), counter to the
points’ quantity the performance decreases as the TW-length
gets longer, intensively reveling the effect of the lengthiness
of TWs. This is owed to the fact that points which appear for a
short time-period in the trajectory are discarded from the BoTW
reducing the potential of a richer database and a more accurate
voting procedure. Table II presents the parameters selected in

TABLE III
SYSTEM’S RESPONSE FOR 4.5K IMAGES OF KITTI 00 DATASET (MS/FRAME)

order to achieve a reduced computational complexity, while still
preserving increased recall rates.

In order to analyze the computational complexity of this work,
we tested the proposed system in K00 since it is the longest
dataset included. In Table III, an extensive assessment of the
corresponding response time per image is presented, while Fig. 6
illustrates the database evolution, as well as the system’s overall
performance. It is noteworthy that a total of ∼53K TWs are
generated for a route of 11Km.

C. Comparative Results

Table IV and Table V show the precision-recall measure-
ments for each approach as reported in the corresponding let-
ters, while two scores are presented for the proposed pipeline.
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Fig. 6. Bag of tracked words evolution and computation times of the proposed
system over the KITTI 00 dataset [32]. The generated tracked words along the
traversed route prove the database’s limited size (left). The total performance
time per image with regard to the processed images depicts the evolution of
computation speed (right).

TABLE IV
COMPARISONS WITH INCREMENTAL METHODS

TABLE V
COMPARISONS WITH PRE-TRAINED METHODS

The first one indicates the performance of our system without
any geometrical check, while the second one demonstrates the
results generated after the impact of RANSAC. Comparisons
were performed with the loop closure threshold δ = 2−11 . This
value was selected by considering the precision-recall curves
from Section IV-B, with the aim to avoid redundant geometri-
cal verification and preserve high recall rates at the same time.
Nevertheless, different values can also be utilized to increase the
achieved recall, with the cost of invoking more frequently the
RANSAC-based check in order to retain perfect precision. In the
comparative results presented the parameters of our method re-
main constant, so as to evaluate the adaptability of the approach.
It is noteworthy that the proposed pipeline can achieve remark-
able recall scores for perfect precision in all tested dataset.

When comparing the two KITTI datasets, the proposed
pipeline exhibits over 90% of recall results. In the case of se-
quence 00, our method performs comparably to the rest of the
approaches, reaching almost 98% in both cases (Pre-RANSAC,

Post-RANSAC). In sequence 05, the proposed algorithm drops
slightly, yet it retains high precision and recall scores. L6O con-
stitutes a challenging dataset where our framework performs
unfavorable against the other algorithms. This is mainly due to
the selected loop closure threshold which obliges the system
to deviate from its potential performance, but also to the fact
that the system encounters a sequence of low textured images
and frame-rate. This characteristic is highlighted in the post-
RANSAC results, where the drop in recall is more intense as
compared to the rest of the datasets, since some of the true
positive detections are discarded as they fail to produce a valid
fundamental matrix with enough inliers. Performance on the
MLG and NC is pretty similar to the rest of the methods, reach-
ing a score of 85% in both datasets, while holding high precision
rates. Finally, in the case of EuR5, the system demonstrates a
significant robustness against the platform’s velocity variations
which outperforms the other algorithms. It is also worth to note
that geometrical verification does not significantly affect the
system’s recall rate, as per the experimental results.

Albeit the proposed system achieves high recall rates in ev-
ery tested dataset, there are methods, both incremental and
pre-trained ones, that outperform our framework. Regarding
the incremental approaches, our previous work [12] performs
better in datasets where the robot mainly follows parallel tra-
jectory tracks when accounting pre-visited locations in which,
the definition of absolute place boundaries is not crucial to the
achieved accuracy. Despite the high recall rates it can achieve,
this method is computational costly as compared to the proposed
one. This is owed to the fact that a sequence segmentation along
the trajectory is required in order to define places. Concerning
the pre-trained methods, PREVIeW’s performance is highly de-
pended on its off-line learned temporal consistency filter, which
enhances the validity of the system’s proposed identifications.
Even if a similar filter could have been adopted to our frame-
work, we preferred not to implement it, since our main focus
lays on the development of a completely on-line architecture.
Concerning the computational efficiency, the size of dataset does
not seem to effect our frameword to perform with high compu-
tational speed although an indexing technique is missing. An
average of 196.4 ms/image proves the superiority of the pro-
posed method in comparison with [22] where the average time
is 432.38 ms/image.

V. CONCLUSIONS

This letter proposes a novel pipeline for appearance-based
place recognition. It makes use of a guided-feature-detection
mechanism along with a KLT tracker to generate unique TWs,
which are assigned to the navigated map. The framework is
coupled with a nearest neighbor voting scheme to identify loop
closing image pairs. A probabilistic score produced by a bino-
mial PDF provides the means to recognize the proper locations,
while a geometrical check determines the final decision. The
presented method was designed to be computationally efficient
and takes advantage of the scale- and rotation-invariance im-
mersed in SURF descriptors. The algorithm does not require
any prior training process, as it retains its robustness against
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different operational conditions, including changes in velocity
and view-point, as demonstrated by the evaluation tests. In com-
parison to state-of-the-art techniques, the proposed approach
achieves high recall rates while maintaining 100% precision.

Future work will focus on the database management for long
term operations. This can be achieved through techniques that
introduce short-term and long-term memory [36] in order to
reduce the database searching space, while an inverted multi-
index [37] could improve the search time. Additionally, we
also plan to enhance the computational speed by using equally
efficient binary descriptors.
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