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Abstract— Simultaneous Localization and Mapping (SLAM)
is vital for modern autonomous robots. Visual place recognition
of pre-visited areas, widely known as Loop Closure Detection
(LCD), constitutes one of the most important SLAM com-
ponents. In this paper a sequence-based LCD algorithm is
proposed by evolving SeqSLAM method. Instead of using fixed-
size sequences’ length during search process, as in the original
approach, we suggest a dynamical length definition based on the
images’ content proximity. Specifically, sequence segmentation
is achieved through a feature matching technique applied on
the incoming visual sensory information, while the mechanism
operates on-line without the need of any pre-training procedure.
Each sequence’s similarity score, produced by a weighted
average function, is utilized as a decision factor for the loop
closing selection. Finally, an extended image-to-image search
in the chosen group of images, avails the system of identifying
the appropriate match. A temporal constraint prevents early
pre-visited areas to be presented as false-positive matches.
The method is evaluated on several outdoor publicly-available
datasets, revealing a substantial improvement on SeqSLAM.

I. INTRODUCTION

Within the scope of visual Simultaneous Localization and
Mapping (SLAM) methods [1], [2] the robot should estimate
its pose as it navigates through the working field. The
importance of an efficient and robust estimation is vital as it
allows for an accurate navigation. The ability to detect and
recognize a place which has previously been observed, is
referred to as Loop Closure Detection (LCD) [3], [4]. Due
to noisy sensor measures or field abnormalities, drifts occur
on the robot’s map. Decreasing such cases through accurate
LCDs provides an improved pose estimation. The detection
of numerous fault-free loop closure events constitutes the
goal of modern autonomous systems.

Owed to the increased availability of computational power
during the last years, cameras have become the primary
sensor unit in most of the robotic mechanisms. The richness
of the acquired information guided the researchers in robotics
community to produce appearance-based systems and specif-
ically, methods which rely their functionality solely on the
incoming visual information [5]. Appearance-based systems
can be distinguished into two main categories, namely global
and local ones. The global appearance-based systems, seek
for the most similar image in the database in an exhaustive
manner. Comparisons are performned using techniques such
as Sum of Absolute Differences (SAD), Bag of Words
(BoW) [6] histograms or features’ vote density [7]. On the
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Fig. 1: Loop closure detections produced by the proposed
technique on the KITTI 00 [14] dataset. Confident selection
of the apropriate loop closing sequence candidate is achieved
through a weighted average similarity score. An extended
search in the chosen sequence’s images is performed to iden-
tify the best match (right). The red stripes show the detected
loop closures illustrated on the images’ similarity matrix
(left-top), while the red cycles indicate the corresponding
detections in the robot’s navigated path (left-down).

other hand, local appearance-based systems search for the
best image match into a group of neighbooring images and
utilize similar comparison techniques. SeqSLAM [8], one
of the most renown algorithms in sequence-based visual
place recognition [9], [10], [11], [12], [13], tackles the
recognition task in an off-line procedure by comparing the
query sequence against the database groups-of-images for the
appropriate sequence match selection. However, the majority
of the aforementioned approaches segments the incoming
image stream into groups, in an arbitrary manner based on a
predefined temporal threshold. As a result, the instances of
the same group might not always exhibit the same semantics,
in which case they may burden the LCD mechanism, or at
least they do not facilitate it.

Having identified this drawback, in this paper, we present
an online LCD method which improves SeqSLAM, being
capable of providing more accurate detections in the robot’s
traversed path. During the on-line aquisition of the camera
data a pre-processing stage is met, where images are con-
verted to greyscale and downsampled. Comparisons with the
database are performed via SAD technique. The proposed
comparison method is generic and other techniques can
also be used, viz. BoW histograms or CNN derived feature
vectors comparisons [15], [16]. However, the original metric
is preferred in accordance to the initial version of SeqSLAM.
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A local feature detection and description method is applied
to the incoming visual stream as well and through feature
matching dynamic sequences are defined on the traversed
route, resulting in camera measurements segmentation ac-
cording to their visual information. During this procedure,
we are interested on the local features’ coherence rather
than the exact semantics of the environment. The appropriate
candidate sequence is highlighted thanks to the similarity
score produced by a weighted average function. Furthermore,
the most suitable loop closing instance is located into the
selected sequence via an image-to-image search at the SAD
measurements domain (Fig. 1).

The main contributions offered by the proposed paper are
summarized as follows:

• An adaptive version of SeqSLAM algorithm, used for
LCD, with robust results, dubbed as DOSeqSLAM. The
approach relies on the efficient dynamic segmentation
of the incoming image stream.

• A mechanism which exceeds the fixed-size sequence
length, providing distinct dynamic areas that decrease
the computational complexity at query time.

• An LCD framework able to recognize pre-visited places
in an on-line scheme.

The rest of the paper is articulated as follows: Section II
provides a brief discussion on LCD methods. In Section III
the DOSeqSLAM is described in detail, while in Section
IV the method’s evaluation and comparative results are
presented. Finally, conclusions are drawn in Section V.

II. RELATED WORK
A widely successful global appearance-based method de-

pending on the BoW model is FAB-MAP 2.0 [17]. The
incoming visual stream is represented by a set of Visual
Words (VWs) belonging to a Visual Vocabulary (VV) con-
structed off-line. At query time, the most recent image in
the pipeline is submitted to the database and loop closing
candidates are detected through a Bayes filter. Sequence-
based algorithms, such as [10] and [18], tackle the LCD
task by grouping the images’ extracted local features or
VWs. Comparisons are performed between the constructed
sequences. In [10], a subset of database candidate sequences
is provided via a Bayes filter. Evaluation on the selected areas
proved a faster implementation of SeqSLAM. Similarly,
the authors in [18] group the camera measurements into
fixed-size sequences of images represented by VWs. In the
course of query sequences’ VW histograms are compared,
while temporal consistency checks are implemented for
performance enhancement. In addition, the work of Wang
et al. [19] improves the SeqSLAM providing a real-time
algorithm by using a sliding window visual-inertial odometer.
Utilizing odometry information along the incoming camera
data, sequence matching is performed. Lastly, a multiscale
search at the chosen sequence provides the correct loop
closing image. Furthermore, Siam and Zhang [20] proposed
the formulation of a more efficient version of SeqSLAM,
titled as “Fast-SeqSLAM”. The description of downsampled
images is implemented by histogram of gradients [21], while

a k-d tree [22] is constructed along to the robot’s path.
An approximative nearest neighbor technique is utilized on
the dimensionally reduced descriptor space for an optimum
sequence match, while a greedy image-to-image search is
performed to achieve the final match.

III. METHODOLOGY

In this section, the DOSeqSLAM algorithm is presented in
detail. A brief description of the initial SeqSLAM approach
is provided as well. Since the main algorithm modification
refers to the sequences’ dynamical definition, in the follow-
ing subsections the transition from the original approach to
the proposed version is described.

A. SeqSLAM

As the incoming image stream is acquired by the system,
the data are converted to grayscale and then downsampled to
a vector of dimensionality χ, which equals the total multitude
of image pixels. Each downsampled image is normalized
per pixel in an N size neighboring area and subsequently
the images are compared. Each normalized image i (Ii) is
compared to all the images in the database by means of SAD:

Dij =
1

RxRy

Rx∑
x=0

Ry∑
y=0

|ρix,y − ρjx,y| (1)

Rx and Ry represent the reduced dimensions of the images,
while ρ denotes the intensity value of each pixel. A difference
vector Di against each database image j (Ij) is produced.
Since the aim of SeqSLAM focuses on searching neighboring
images, instead of single ones, a contrast enhancement
process is performed on every element of Di, which is
proportional to 1D patch-normalization in a local area of
ε pixels:

D̂i,µ =
Di,µ −Dε

σε
(2)

where Dε denotes the local mean and σε the local standard
deviation around element µ.

The recognition process is established on the produced
difference-enhanced matrix D̂. At query time, a number of
trajectories is projected on D̂ for each database image j.
The trajectories’ length depends on SeqSLAM pre-defined
sequence size. Each trajectory represents a possible velocity
assumption corresponding to different vehicle’s velocities
V on the navigated path. For each trajectory, a score s is
calculated:

s =

i∑
z=i−w

D̂z,k (3)

where i represents the query index and w is the sequence’s
length. The different velocity assumptions k are computed
for each D̂i,j as:

k = j + V (w − i+ t) (4)

V is assigned with multiple values within the range of
[Vmin, Vmax] (advancing by Vstep each time step t). The
minimum score s is selected for the particular database image
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Fig. 2: The searching procedure of SeqSLAM [8] algorithm.
In the course of query image (Ii), a sliding window technique
scans the database for the proper image match by searching
into groups of images. The white stripes indicate the pro-
posed trajectories which are evaluated for the database image
Ij . The trajectory with the minimum accumulative distance
is propagated to the query’s i score vector S. The horizontal
red rectangle illustrates the query’s evolution process, while
the vertical one indicates the sliding scan of the database.

Ij . The possible trajectory assumptions for image pair Ii,j
are illustrated in Fig. 2.

Finally, the computed scores s of each database image Ij
for query Ii are arranged into a vector format Si [si,j , si,j+1,
si,j+2, ... si,j+n]. The minimum distance is located and
selected. Subsequently the chosen score is normalized with
respect to the second lowest value, outside the corresponding
w range. In order for an image pair to be considered as loop
closure a decision factor θ has to be met.

B. From constant to dynamic sequence length

While the original approach of SeqSLAM utilizes a fixed-
size sliding window scheme to examine the database images,
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Fig. 3: As the incoming image I(t) (black outline) enters
the pipeline, the query procedure starts after a time constant
κ is satisfied. Sequences with orange, yellow and blue
outline participate in the query process. The search area is
determined by the green outline, while the red ones are the
excluded images.

DOSeqSLAM focuses on searching in distinct dynamically
defined group of instances. Towards this goal, the incoming
image stream is converted to greyscale and firstly passes
through a local feature extraction module, while the prepro-
cessing stage, mentioned in Section III-A, follows. SURF
[23] method is used for feature detection and description,
whilst a descriptor database is temporary retained along with
an inverted index until the sequence’s construction. Dynamic
sequences are determined through a feature matching coher-
ence check. Particularly, at time t, the incoming image stream
I(t − n), ..., I(t − 2), I(t − 1), I(t) is segmented once the
correlation between the last n image’s descriptors cease to
exist: ∣∣∣∣∣

i=n⋂
i=0

dI(t−i)

∣∣∣∣∣ ≤ 1 (5)

where dI denotes the image’s descriptors and |X| the cardi-
nality of set X.

C. DOSeqSLAM

Following the extraction of SURF local features from the
input camera data, SeqSLAM is applied. For each image
I(t) comparisons are performed against the database using
the SAD metric (eq. 1). Finally, contrast enhancement (eq.
2) is applied on the difference matrix (D) entries. The
LCD mechanism is not activated unless a time constant
κ is satisfied. This factor is used to protect the system
from early observed detections which are highly probable
to occur when two images are captured under low time-
proximity. Such cases can reduce the system’s performance
by producing false-positive identifications. The searching
area spans between the first acquired image I(t0) and the
κ-th one I(t0−κ), as depicted in Fig. 3.

At time t, when the latest sequence SeqN is created,
the query process is implemented for the previously one
constructed SeqN−1. Since DOSeqSLAM avoids the slid-
ing window scheme of the initial approach, the possible
trajectory assumptions’ scores sdo are calculated only for
the first entry IseqQ1 of the query sequence SeqN−1, result-
ing to a reduced computational cost. Thus, every instance
[IseqQ1 ...I

seqQ
end ] belonging to SeqN−1 gets the same trajectory

score sdo per database image Ij . An illustration of DOSe-
qSLAM’s functionality is shown in Fig. 4.

Similarly to SeqSLAM, trajectories’ assumptions depend
on the velocity parameters (Vmax, Vmin, Vstep). Since the
proposed method adopts a dynamic window scheme, each
score sdo is adjusted to the average of the accumulated values
for each trajectory path:

sdo =
1

seqQLen

IQ
end∑
IQ1

D̂k (6)

where IQ1 and IQend are the first and last image timestamps
of the query sequence, respectively; seqQLen is the query’s
length and k denotes the velocity assumption paths (eq. 4).

Computing the sdo score for every database image results
into the vector Sdo. The minimum value of Sdo is selected
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Fig. 4: The proposed DOSeqSLAM algorithm. As image It
enters the pipeline (concluding sequence SeqN ) a searching
procedure is performed for sequence SeqN−1. Each instance
[IseqQ1 ...I

seqQ
end ] belonging on SeqN−1 gets the same trajec-

tory score s for database image Ij . The system scans the
database till the instance It−k, which is determined by the
time constant κ. Yellow bins represent the images which
have not been observed by the system since the mechanism
performs on-line. The white stripes indicate the possible
trajectories’ paths for different vehicle’s velocities.

for further processing. Since the original approach searches
for the second smallest value outside w, the proposed method
defines the WDOSeq range using the lengths of SeqN−2 and
SeqN (Fig. 5):

WDOSeq = SeqN−2 ∗ 2 + SeqN ∗ 2 (7)

The minimum score is then normalized over the second
lowest value resulting to γ. The final decision depends on a
weighted average function:

f(γ) =
1

6
γ(SeqN−2) +

4

6
γ(SeqN−1) +

1

6
γ(SeqN ) (8)

Through the satisfaction of factor th a loop closure event
is determined when:

f(γ) < th (9)

Finally, an image-to-image association is performed by
a greedy search in the enhanced difference sub-matrix
[D̂IQ1 ,Ij

...D̂IQ
end

,I
j+Seq

Q
Len

] for the minimum distance of each

image in query sequence.

IV. EXPERIMENTAL EVALUATION

The proposed DOSeqSLAM algorithm is evaluated on
several outdoor publicly-available datasets, summarized in
Table I, and compared against the initial approach. A brief
description of the experimental procedure also follows.

A. Procedure

1) Datasets: Four different datasets are selected rep-
resenting dynamic outdoor environments with many loop
closure events in their trajectory. Moreover, a variety in frame
rate is achieved. The incoming visual data are obtained by
stereo camera systems in most datasets, nevertheless for the
purposes of our method only the right input stream is used.
KITTI 00, KITTI 05 [14] and Malaga 2009 Parking6L [24]
(Mlg6L) are recorded from cameras mounted on a moving
car, while in Lip6 Outdoor [25] (Lip6O) the incoming data
is retrieved from a hand-held sensor. KITTI 05 and Mlg6L
are preferred as evaluation datasets since the recorded data
provide considerable loop closure events, while KITTI 00
and Lip6O are chosen as the testing ones.

TABLE I: Datasets’ description

Dataset Description FPS
KITTI 00 [14] Outdoor, dynamic 10
KITTI 05 [14] Outdoor, dynamic 10
Malaga 2009 Parking 6L [24] Outdoor, slightly dynamic 7
Lip6 Outdoor [25] Outdoor, slightly dynamic 1

2) Ground Truth: As Ground Truth (GT) is defined the
information data which indicate the actual loop closure
events occuring in a dataset. GT is structured as a binary
matrix with image-to-image correspondences, where the ones
(GTij = 1) denote the existance of a loop closure event.
For KITTI 00, KITTI 05 and Mlg6L, the used GT were
constructed manualy in our previous work [26]. For Lip6O,
GT is available by the respective authors.

3) Precision-Recall: Comparisons between algorithms is
achieved through the precision and recall metric. As preci-
sion is defined the ratio between true-positive identifications
(image-to-image) and the total system’s detections. Recall is
defined by the number of detected loop closure events over
the actual events appeared in the GT.

B. Evaluation

The DOSeqSLAM’s parameters are shown in Table II.
Most of these parameters are defined similarly to the initial
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Fig. 5: The proposed algorithm searches for the second
lowest value outside of a window range WDOSeq . The
yellow and blue areas indicate sequences’ SeqN−2 and SeqN
lengths, respectively. The dots are the produced scores for
each database image. The green ones illustrate the minimum
scores, while the red dot is rejected due to its position within
the window range.



TABLE II: Parameters

Downsampled image pixels, χ : 2048
Pixel normalization side length, N : 8
Reduced image side length , Rx, Ry : 32, 64
Contrast enhancement local area, ε : 10
Time constant, κ : 40s
Maximum trajectory velocity, V elmax : 1.3
Minimum trajectory velocity, V elmin : 0.7
Trajectory velocity step, V elstep : 1
DOSeqSLAM decision factor th : 0.75

version, i.e. downsampled image size, normalization area
and contrast enhancement neighborhood length. The rest
of them (SeqSLAM’s sequence length w and velocity’s
properties [Vmax, Vmin, Vstep]) rely on the implementation
of OpenSeqSLAM1.

Among the selected testing cases, KITTI 05 is the one ex-
hibited the largest time periods in which the camera remains
still. Based on this dataset, the value of κ was selected as
40s, though, different operating conditions may result into
different conclusions without affecting the system’s accuracy.

An evaluation mechanism is constructed to measure the
effect of the system’s parameters on the achieved perfor-
mance. A variety of different th are selected so as to produce
the precision-recall curves. The estimation of proper th
parameter is accomplished through KITTI 05 and Mlg6L
(Fig.6a-left). In order to provide a robust and efficient system
without the existence of any false-positive LCD the decision
factor is selected to th = 0.75. Using the same set of
parameters we assess the impact of our method on the
two standalone testing datasets. The achieved performance
is shown in Fiq. 6a-right. We observe that DOSeqSLAM
executes high recall rates for 100% precision.

With a view to carry out a fair comparison between the two
algorithms, a similar procedure is followed for SeqSLAM.
Since the method has not been tested at the aforementioned
environments the precision-recall curves are constructed on
the evaluation datasets for the estimation of θ (Fig.6b-left).
Subsequently, the algorithm was tested on KITTI 00 and
Lip6O, as illustrated in Fig.6b-right.

C. Comparative Results

Table III shows the obtained results for every tested dataset
in a similar manner to [25], [27], where the biggest number
of true-positive detections are counted, with the fewest possi-
ble false-positive events. In addition to this metric, precision
and recall have also been considered. It can be seen that
the proposed DOSeqSLAM method is capable of detecting
more true-positive loop closure events with 100% precision
in comparison to the initial version. In KITTI 05 and Mlg6L,
our algorithm performs favorably, while in KITTI 00 the
LCDs are higher in SeqSLAM, nevertheless its precision is
reduced to 97%. In Lip6O where SeqSLAM totally fails, the
proposed algorithm exhibits good performance improvement.

1The OpenSeqSLAM algorithm can be found online in :
https://openslam.org/openseqslam.html
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Fig. 6: Precision-recall curves of (a) the proposed algorithm
and (b) the original approach. On the left side, the produced
curves from the evaluation datasets KITTI 05 [14] and
Mlg6L [24] were used for the estimation of th and θ. On
the right side, the produced curves illustrate each system’s
performance on the tested environments, KITTI 00 [14] and
Lip6O [25]. Color markers (cycles) on the top of each graph
indicate the achieved recall rate using the chosen parameters.

V. CONCLUSIONS

In this paper, a modified version of the widely known
SeqSLAM algorithm is presented for LCD, dubbed as DOSe-
qSLAM. The proposed method dynamically segments the
incoming visual sensory information for sequences’ defini-
tion through a local feature matching technique. Based on the
query’s sequence size, the system seeks into the database for
the most appropriate match, while the final decision about
a loop closure event is obtained via a weighted average
function. By converting the fixed-size sliding window search
of SeqSLAM into a dynamic one, we construct a system
capable of performing on-line with lower computational cost.
The proposed method is evaluated on several environments
demonstrating an improvement against the original. Exam-
ples of LCDs are illustrated in Fig 7.
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