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Abstract— Place recognition of pre-visited areas, widely
known as Loop Closure Detection (LCD), constitutes one of
the most important components in robotic applications, where
the robot needs to estimate its pose while navigating through
the field (e.g., simultaneous localization and mapping). In this
paper, we present a novel approach for LCD based on the
assignment of Visual Words (VWs) to particular places of
the traversed path. The system operates in real time and
does not require any pre-training procedure, such as visual
vocabulary construction or descriptor-space dimensionality re-
duction. A place is defined through a dynamic segmentation
of the incoming image stream and is assigned with VWs
through the usage of an on-line clustering algorithm. At query
time, image descriptors are converted into VWs on the map
accumulating votes to the corresponding places. By means of a
probability function, the mechanism is capable of identifying a
loop closing candidate place. A nearest neighbor voting scheme
on the descriptors’ space allows the system to select the most
appropriate image match at the chosen place. Geometrical and
temporal consistency checks are applied on the proposed loop
closing pair increasing the system’s performance. Evaluation
took place on several publicly available and challenging datasets
offering high precision and recall scores as compared to other
state-of-the-art approaches.

I. INTRODUCTION

While a robot crosses a route, it is possible to misinterpret

its trajectory due to field abnormalities, enviromental condi-

tions or mis-accurate sensor measures. Such cases produce

drifts affecting the incrementally constructed map, which

introduces a great risk in completing robot’s mission. The

ability of the robot to localize itself and map its surroundings,

widely known as Simultaneous Localization and Mapping

(SLAM) [1], [2], is strengthened owing to visual place

recognition functionality and more specifically the identi-

fication of pre-visited areas, also known as Loop Closure

Detection (LCD) [3]. Accurate LCDs methods offer precise

pose estimation and improved system performance.

In recent autonomous systems with increased computa-

tional powers, cameras have become the primary sensor

modules for appearance-based place recognition due to the

rich information they provide [6]. The acquired images are

processed to detect keypoints described by methods such

as SIFT [7], SURF [5], or binary equivalents like BRISK

[8] or ORB [9]. Using a clustering procedure on a training

sample of local features many LCD mechanisms quantize the

descriptor space into Visual Words (VWs). This framework,

known as Bag-of-Words (BoW) [10], is originated in text

retrieval techniques [11]. According to the way by which the
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Fig. 1: A representation of the proposed loop closure detec-

tion method tested on KITTI 05 [4] dataset. Red and green

outlined frames indicate different image sequences (places)

the robot constructed during its autonomous mission. Each

place contains a different and unique set of Visual Words

(VWs). At query time, SURF [5] local feature descriptors

are converted into their nearest neighboring VWs, while the

votes’ aggregation (density of dashed arrows) indicates an

image-to-place match.

Visual Vocabulary (VV) is constructed, BoW models can be

distinguished into two main categories, namely off-line and

on-line ones. A popular quantization technique, which falls

into the off-line approaches is k-means clustering, where k
denotes the number of clusters and consequently the VV’s

size. When the incoming image enters the pipeline a VW

histogram, of equal size to the VV, is created based on the

widely used “term frequency-inverse document frequency”

(tf-idf) technique [10]. Comparing the VW histograms of the

query and the database image yields the most appropriate

match. Besides the descriptor space discretization, many

LCD approaches are based on voting techniques for place

recognition. Utilizing the votes’ aggregation density into a

dimensionally reduced descriptor space [12], [13], pre-visited

areas can be identified.

In this paper, we present an efficient image-to-sequence

appearance-based LCD method. Using a voting scheme over

the on-line generated VWs and coupling the method with

a probability function, our approach is able to accurately

detect revisited places. A dynamic sequence segmentation,

performed on the incoming image stream formulates “places”

on the robot’s navigated path. Subsequently, the accumulated
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local feature descriptors are processed by a Growing Neural

Gas (GNG) [14] clustering mechanism for the correspond-

ing VWs generation. When new query images enter to

the pipeline, the extracted descriptors assign votes to the

database sequences including their nearest neighboring VWs

(Fig. 1). The system uses a binomial probability density

function to locate the proper candidate place and a nearest

descriptor neighbor technique to identify image-to-image

associations within the selected loop closing sequence. In

addition, temporal and geometrical consistency checks are

performed between the query and candidate image, providing

a higher level of discrimination. The main contributions

offered by the paper in hand are summarized as follows:

• An image-to-sequence LCD pipeline with robust results

and low computational complexity, evaluated on six

different challenging environments.

• A dynamic sequence segmentation method, where

places are constructed through a feature matching crite-

rion. During this procedure, we are not interested in the

semantics of the environment, but rather in grouping

camera measurements which contain common visual

information.

• A novel “VWs to places assignment” capable of iden-

tifying pre-visited locations only by converting the

query’s local descriptors into database’s VWs.

Using a pre-trained vocabulary can possibly lead to an

inaccurate discretization of the descriptor space, especially

when the robot traverses places with inconsistent to the

vocabulary’s training set visual information. Likewise, in

cases where the descriptors’ space is dimensionally reduced,

a training procedure is required. To this end, the proposed

algorithm achieves a standalone and “anytime-anywhere”

ready system by adopting an on-line VV formulation of

the observed world. The rest of the paper is organized as

follows. In Section II, a brief discussion on the appearance-

based LCD methods is provided. In Section III, the proposed

algorithm is described in detail, while Section IV presents

an evaluation of our method with comparative results. Con-

clusions and future work are discussed in Section V.

II. RELATED WORK

The off-line appearance-based method proposed in [15]

utilizes the BoW model for image representation, while

a Chow Liu tree [16] learns the co-visibility probabilities

between VWs’ occurrences. In a similar approach [17], a

binary pre-trained VV is used, accompanied by a geometrical

verification step for further performance enhancement. Since

the above methods focus on image-to-image associations,

in our recent work [18] we tackle the LCD problem by

comparing sequences of images instead of single instances.

The incoming data are segmented into fix-sized groups of

images where each sequence is represented by a common

VW histogram. Finally, using a quantitative interpretation of

temporal consistency, sequence-to-sequence matches coher-

ently advancing along time are enhanced.

Nicosevici and Garcia [19] proposed the formulation of an

on-line VV by using an agglomerative clustering mechanism.

A scalable and dynamic VV was created free from any

restriction presented in traditional methods (e.g., number

of clusters in k-means). Furthermore, Angeli et al. [20]

costructed two parallel VVs (one from local color histograms

and another from SIFT descriptors) using distance thresholds

as merging criterion, while the final matching probability was

estimated through a Bayesian filter. In addition, Khan and

Wollherr [21] proposed an on-line incremental formulation

of a binary VV, by tracking features between consecutive

instances. Loop closures were detected using a likelihood

function and temporal consistency checks.

In methods avert from BoW model, such in [12] and [13],

LCD is achieved by adopting voting techniques. During a

pre-processing stage, the descriptors’ space is dimensionally

reduced via PCA [22], while a classification mechanism,

such as K-Nearest Neighbor (K-NN), assigns votes to

the database images. In [12], the matching functionality

between query’s local descriptors and databases’ ones, was

implemented by a k-d tree [23], where the regions of

high vote density are selected as loop closure candidates.

Likewise, the authors in [13] used a probabilistic score in

order to estimate the similarity between images. Temporal

and geometrical verification checks were also applied for

performance enhancement. Our approach differs from the

aforementioned ones due to the fact that we adopt an image-

to-sequence inference scheme, rather than querying against

the entire image database. In addition, our method does not

require any training process.

As a final note, recently appeared methods in the visual

place recognition field, such as [24] and [25], utilized Con-

volution Neural Networks (CNNs) initially trained for ob-

ject recognition. The output of specific convolutional layers

are treated as image descriptors and revisited places are

determined by measuring distance metrics amongst them.

Despite their high performances, CNNs are viewpoint de-

pendent, while the topological information is not provided

in the higher networks’ levels [26], [27]. Thus, they are still

disconnected from the overall SLAM architecture and LCD,

which is the main target of the proposed work.

III. METHODOLOGY

In this section an extended description of the proposed

LCD pipeline is presented. As mentioned, the algorithm

describes each place by a set of VWs formulated on-line.

As a first step, images exhibiting time and content proximity

are congregated, resulting in a sequence of images which de-

termines a place. Subsequently, GNG clustering is performed

over the sequence’s accumulated descriptors, generating the

corresponding VWs. In the course of a query, local features

from the most recently acquired frame are extracted and

converted to their most similar VWs in the trajectory. Each

descriptor-to-VW conversion corresponds to a new vote for

the sequence. The place which aggregates the most VW

votes is determined through a binomial probability function.

A nearest neighbor technique on the descriptors’ space

indicates the most similar image in the particular sequence.

Finally, the chosen instance is propagated to geometrical and
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Fig. 2: An overview of the proposed loop closure detection method. As the incomming image stream enters the pipeline,

dynamic “places” (S(t)) are formulated through a feature matching technique (left). Subsequently, the accumulated local

feature descriptors (DS(t)) are fed into the Growing Neural Gas (GNG) [14] clustering mechanism, where the corresponding

place’s Visual Words (VWs(Si)) are generated (center). At query time, image descriptors (dQ(t)) are converted into their

nearest neighboring VW from the on-line created Visual Vocabulary (VV). During conversion stage votes are shared among

the places, where the VWs belong. Finally, through a binomial distribution function, candidate sequences are located according

to their vote density (right). The highlighted red area indicates the density rarity a loop closure event would produce.

temporal consistency checks, in order to be accepted as a

loop closure match. An outline of the proposed algorithm is

shown in Fig. 2.

A. Places Formulation

The proposed place recognition system operates in a

pipeline fashion; the incoming data being the image stream.

For each instance I entering to the system, the ν most promi-

nent SURF keypoints are detected. As the robot navigates

through the field, some of the incoming camera measure-

ments may be unable to produce enough visual information,

e.g., the observation of a black plain. To avoid the creation of

inconsistent places, images that contain less than ξ keypoints

are rejected. During the on-line operation, the projected

descriptor space is constantly updated by the detected feature

vectors dI . Instead of reducing the descriptors’ dimension-

ality, the proposed algorithm utilizes the full SURF space.

During the course of the procedure, new places S are

determined through a feature matching coherence check.

More specifically, at time t, the incoming image stream

I(t − n), ..., I(t − 2), I(t − 1), I(t) is segmented when the

correlation between the last n images’s descriptors cease to

exist: ∣∣∣∣∣

i=n⋂

i=0

dI(t−i)

∣∣∣∣∣ ≤ 1 (1)

where |X| denotes the cardinality of set X. A descriptors

database DS is also retained for each place, via:

DS =

i=n⋃

i=0

dI(t−i) (2)

B. Representation of Places by Visual Words

In order to assign VWs to places local descriptors DS are

utilzed as input to the GNG clustering algorithm. In contrast

to other popular clustering methods, where the number of

clusters is predefined, the GNG incrementally adds new

nodes (VWs) until an error-minimization criterion is met.

Since the proposed approach uses the GNG mechanism

for quantizing the feature vectors, its main parameterization

remains the same as originally implemented in [14]. The

maximum allowed set of VWs (α), which will be created by

the GNG, is defined as being equal to the images’ extracted

features ν. This analogy is chosen so as to provide a direct

correspondence between VWs and image features. Thus,

a new VW is generated when a frequency criterion ϕ is

met, defined as the ratio between the maximum number of

VWs per place and the mean of sequences’ length μ (ϕ =
ν/mean(μ)). Since the system aims for low computational

complexity, the GNG iterations (ε) are selected to the lowest

permissible. Finally, a VV database is retained during the

procedure consisting of the generated VWs:

V Vdb =

i=t⋃

i=1

VWs(Si) (3)

where the term St is the latest formulated place in the

trajectory. An inverted indexing list [17] is also maintained

along the VV providing faster image-to-sequence associa-

tions during the inference procedure.

C. Query to Place Assignment

Given a query image IQt , a searching procedure is per-

formed among the produced places in order to detect loop

closure candidates. As opposed to the most BoW-based sys-

tems, where VW histogram comparison techniques are used,

the proposed approach utilizes a voting scheme. A nearest

neighbor technique projects the query’s local features to the

generated VWs belonging to V Vdb. During the conversion of

the query’s feature descriptors, votes are assigned to places
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TABLE I: Datasets’ synopsis

Dataset Description Camera Position Image Resolution # Images Frames Per Second

KITTI 00 [4] Outdoor, dynamic Frontal 1241 × 376 4551 10
KITTI 05 [4] Outdoor, dynamic Frontal 1241 × 376 2761 10
Biccoca 2009-02-25b [28] Indoor, static Frontal 640 × 480 26335 15
Malaga 2009 Parking 6L [29] Outdoor, slightly dynamic Frontal 1024 × 768 3474 7
New College [30] Outdoor, dynamic Frontal 512 × 384 52480 20
Euroc MH 05 [31] Indoor, static Frontal 752 × 480 2773 20

in accordance with the VWs’ origin. The vote density xi(t)
of each place i constitutes the factor that determines the

probabilistic similarity score.

In cases where the robot’s velocity decreases or the system

remains still, it is possible for the query and database sets

to observe the same scene. In such a scenario, the incoming

camera measurements exhibit a strong spatial relationship

resulting in false-positive LCDs. Yet, the equally strong

temporal relationship of their posses dictates that such a loop

closure is erroneous. A searching area (V Vsa) that rejects

recently acquired input frames is defined based on a temporal

constant ψ:

V Vsa = V Vdb ∩ [VWs(S1), V Ws(St−ψ)] (4)

When the voting procedure is completed, a binomial prob-

ability function [13] is employed to check the potential

loop closuring places. If the robot visits a new sight (never

encountered before), the voting procedure shall be random

meaning that the votes density for each place in V Vsa would

be low. Accordingly, when the robot navigates through a

revisited area, the vote density of the specific place should

be high. Based on the binomial distribution function’s prop-

erties, the later case corresponds to a low probability event.

Such instances are interpreted as loop closure candidates by

the proposed system:

Xi(t) ∼ Bin(n, p), n = N(t), p =
λ

Λ(t)
(5)

N =
∑

dQ(t) (6)

λ = VWs(Si) (7)

Λ =
∑

VW (S1) ∼ VW (St−ψ) (8)

where N denotes the multitude of query’s VWs (dQ(t)), λ
corresponds to place’s i VWs and Λ is the sum of VWs

within the searching area V Vsa. The probability score is

calculated for each place, while two conditions have to be

satisfied before a place is recognized as pre-visited. The score

has to satisfy a threshold value σ:

Pr(Xi(t) = xi(t)) < σ < 1 (9)

Additionally, the number of accumulated VWs for a specific

place needs to be greater than the distribution’s extended

value:

xi(t) > E[Xi(t)] (10)

Equation 10 discards the cases where fewer votes are col-

lected than a random voting.

D. Image to Image Association

Up to this point, our algorithm is capable of identifying a

pre-visited location in the traversed map. As a final step, an

image-to-image correlation is performed between the query

image and the most similar member of the selected place Sm

in the database. Based on a K-NN classifier (K = 1), the

query’s descriptors dQ are matched with the ones (DS(m)
)

belonging to S(m). The image (IS) which gathers the most

matches is considered as loop closure candidate and is kept

for further validation.

In order to avoid false positive loop closure matches, the

pair of IQt and IS is subjected to a geometrical consistency

check. Using a RANSAC-based scheme, a fundamental

matrix T is estimated between the query and the proposed

image. If the computation of T fails or the number of

inlier points between the two images is less than a factor

τ , the candidate instance is ignored. The parameterization

of the applied RANSAC method follows the one in [17].

Finally, with a view to accept a matching pair, the method

incorporates a temporal consistency check among the last β
input frames. More specifically, a LCD is accepted when the

aforementioned conditions are met for β consecutive camera

measurements.

TABLE II: Parameter list

Minimum detected local features per image, ξ : 5
Maximum prominent local features per image, ν
Maximum generated visual words per place, α

: 300

Visual words’ generation frequency, ϕ : 25
Growing Neural Gas iterations, ε : 1
Search area time constant, ψ : 40 secs
Geometrical verification inliers, τ : 12 [17]
Images’ temporal consistency, β : 2
Probability score threshold, σ : 10−12

IV. EXPERIMENTAL EVALUATION

The following section provides a brief description of the

experimental procedure, an expansive evaluation of the pro-

posed algorithm, as well as comparative results. The method

is tested with six publicly available datasets, including indoor

and outdoor environments, as shown in Table I. Comparisons

performed against several state-of-the-art approaches, such as

FAB-MAP 2.0 [15], IBuILD [21], Gálvez-López et. al. [17],

Gehrig et. al. [13], Bampis et. al. [18].

A. Procedure

1) Datasets: Publicly available datasets are selected so

that a variety of different camera measurement properties,

5982



e.g., image’s resolution, robot’s velocity and frame rate

(FPS), can be achieved. In the cases of KITTI 00 [4],

KITTI 05 [4] and Malaga 2009 Parking 6L (Malaga6L) [29]

datasets, the incoming instances are obtained by a camera

mounted on a moving car. Biccoca 2009-02-25b (Biccoca)

[28] and New College [30] have been recorded by means of

the vision stystem of a wheeled robotic platform, while in

Euroc MH 05 [31] the incoming image stream is retrieved

by sensors mounted on a hex-rotor helicopter. Most of the

aforementioned datasets contain stereo information, though

for the purposes of this evaluation only the left camera image

stream is used.

KITTI 00 and KITTI 05 are preferred as outdoor datasets,

since the recorded data provide considerable loop closure

examples, accurate odometry and high resolution information

(image’s size and vehicle’s velocity). The Biccoca and Euroc

MH 05 are selected as indoor datasets, due to many strong

perceptual aliasing examples presented in their trajectory.

New College and Malaga6L are chosen for evaluation as they

contain a wealth of visual information, as shown in Table I.

2) Ground Truth: A binary matrix, whose rows and

columns correspond to images at different timestamps and

its elements denote the presence (GTij = 1) or absense

(GTij = 0) of a loop closure event, is defined as Ground

Truth (GT) for each dataset. For the Biccoca, Malaga6L and

New College instances, GT is provided by the authors in

[17]. KITTI 00, KITTI 05 and Euroc MH 05 do not provide

such information therefore, we manually constructed the

corresponding GTs by considering the odometry information.

3) Precision-Recall: In order to compare the performance

between different algorithms, the precision and recall metrics

are used. Precision is defined as the number of true positive

LCDs over the total systems identifications. Recall is the

ratio between the true positive detections and the actual total

of loop closure events defined by the GT.

B. Method Evaluation

The selected method’s parameters are summarized in Table

II. During the experiments, the average sequences’ length μ
was observed to be approximately 12 for all tested datasets.

In Fig. 3, we evaluate the effect of the local features’

number preserved for every image. As shown by the pre-

cision and recall curves in cases where the extracted local

features are less than 400, the system’s achieved performance

is resembling. As the number of accepted features increases,

it is observed that the recall rate (corresponding to 100%
precision) is decreasing. This is owed to the fact that weak

features detected during the robot’s first visit to a certain

location are mainly noisy. Thus, it is less probable for them

to be matched in the course of a loop closure events.

In Fig. 4, the effect of GNG iterations in execution

time is evaluated in a dataset containing 2.5k images1. As

illustrated by the red curve, the system’s performance is

slightly improved when the number of iterations increases.

1A Matlab-based implementation of the proposed approach was tested on
a quad-core 2.6GHz system with 8GB RAM.
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Fig. 3: Precision and recall curves evaluating the utilized

local features ν per image. This corresponds to the number

of VWs generated in each place (α). 300 features per image

provide better recall rate, while the execution time remains

low. Experiments are performed on the KITTI 05 [4] dataset.
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Fig. 4: Precision and recall curves evaluating the execution

time of the prososed algorithm against the Growing Neural

Gas (GNG) iterations. While the second iteration (red line)

doubles the complexity, the recall rate (for 100% precision)

indicates a similar performance to the first one (black line).

Experiments are implemented on the KITTI 05 [4] dataset.

Moreover, the execution time is raising by a factor of two

from the first to the second iteration (from 300 ms to 620 ms).

Bearing that in mind, a small percentage of recall is sacrificed

for a faster implementation capable of being utilized into

large scale datasets (e.g., New College).

The searching offset ψ is selected to avoid LCDs with

strong spatiotemporal relationship, as in the cases of KITTI

05 and New College. Moreover, given the chosen time

constraint, the system is capable of including early pre-

visited places in the navigated path, as demonstrated in the

case of Biccoca.

The system’s overall performance is presented in Fig. 5.

Precision and recall curves are generated by selecting several

different decision thresholds σ until false positives matches

are eliminated. In order to evaluate the impact of our method,

the proposed parameters were fixed in all tested scenarios.

C. Comparative Results

Table III compares the precision and recall metrics of the

proposed method against the aforementioned state-of-the-art

approaches. The cited methods’ performance are obtained

by the respective papers. It is notable that the proposed

algorithm can achieve high recall rates for 100% precision

in every tested environment. In outdoor datasets, such as

KITTI 00, KITTI 05, New College and Magala6L, the system

exhibits an improved performance with over 90% recall
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Fig. 5: Precision recall curves for the proposed approach.

Color markers (cycles) on the top of the graphs highlight

the highest recall for 100% precision. The used parameter

setup is summarized in Table II.

in KITTI datasets and almost 90% in New College and

Malaga6L. In Biccoca the method performs unfavorably,

comparing to the rest of the approaches, the reason being

the platform’s low velocity (the robot navigates in areas

with strong perceptual aliasing for a long period of time).

In the case of Euroc MH 05, the system encounters many

abruet velocity variations along the trajectory, resulting into

a recall rate similar to [13]. Figure 6 demonstrates the LCDs

provided by the system on to of the robot’s trajectories.

TABLE III: Comparative results

Dataset Approachs Precision (%) Recall (%)

KITTI 00 [4]
Gehrig et al. [13]
Bampis et al. [18]

Proposed

100
100
100

92
81.54
93.18

KITTI 05 [4]
Gehrig et al. [13]
Bampis et al. [18]

Proposed

100
100
100

94
84.80
94.20

Biccoca [28]
Gálvez-López et al. [17]

Bampis et al. [18]
Proposed

100
100
100

81.20
78.10
66.19

Malaga6L [29]

Gálvez-López et al. [17]
FAB-MAP 2.0 [15]
Bampis et al. [18]

IBuILD [21]
Proposed

100
100
100
100
100

74.75
68.52
76.78
78.13
87.99

New College [30]
Gálvez-López et al. [17]

Bampis et al. [18]
Proposed

100
100
100

55.92
77.55
87.97

Euroc MH 05 [31]
Gehrig et al. [13]

Proposed
100
100

71
69.21

V. CONCLUSIONS

In this paper, an online image-to-sequence probabilis-

tic voting framework has been presented. The mechanism

achieved each place’s description by unique VWs, while

the binomial probability function provides the final loop

closure decisions. As the incoming data arrive to the system,

a feature matching technique undertakes the image stream

segmentation for constructing new places. Through a GNG

clustering algorithm, the feature-members of each segmented

sequence are converted into VWs. A probabilistic voting

scheme between the query image and the database places is

Beginning End

Robot's Navigated path

Fig. 6: Datasets’ trajectories (left) and example images

(right). From top to bottom: KITTI 00 [4], KITTI 05 [4],

Biccoca 2009-02-25b [28], Malaga 2009 Parking 6L [29],

Euroc MH 05 [31], New College [30]. Red circles indicate

the system’s loop closure detections, while colored arrows

illustrate the temporal evolution according to the color-bar.
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performed for loop closure candidate identifications. Finally,

a nearest neighbor technique is used for image-to-image

matching. The method is independent of any prior knowledge

of the working environment demonstrated by its ability to

perform robustly in six different datasets (indoor, outdoor,

static and dynamic). As compared to several state-of-the-art

approaches, the proposed algorithm offers high recall rates

for 100% precision in most of the evaluated datasets. As

future work the authors plan to evaluate the proposed method

within a well-established SLAM architecture [32].
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